
CSE 413 – AU 02 – Programming Languages Homework 5

Page 1 of 2

For this part of the assignment, you will design, implement and test a Java class
CompilerIO that will handle input and output for the compiler.

The idea behind this class is that the compiler will use a single CompilerIO object to
manage input and output, which will shield the rest of the compiler from the details of
file handling. The input and output files are ordinary text files.

CompilerIO constructors

When the compiler starts, it creates an instance of the CompilerIO class. The
CompilerIO constructor opens the input and output files and stores references to them for
later use.

CompilerIO is required to have two constructors: CompilerIO(String in) and
CompilerIO(String in, String out). If an exception occurs while opening the files, the
constructors should throw the exception and let the caller handle it.

The parameters for the two-argument constructor are the names of the input and output
files. The constructor opens both files. The input file name is used to create a
BufferedReader object, and the output file name is used to create a PrintWriter object.
References to these objects are stored in instance variables.

The parameter for the single-argument constructor is the name of the input file. The
constructor creates the output file name by taking the input file name (say test.txt) and
replacing the extension with ".asm" (test.asm). Don't make assumptions about the
extension in the input file name. It might be ".txt", but it might also be ".stuff", or ".d" or
something else. (Implementation hint: class String includes methods that locate the first
or last occurrence of a character or substring in a String.) Once having created the output
file name, the constructor opens both files to create a BufferedReader object and a
PrintWriter object and stores references in the appropriate instance variables.

String readSrcLine() and void printAsmLine(String s)

The scanner will use the CompilerIO object's readSrcLine() method to read the source
program text. The code generation parts of the compiler will use printAsmLine(s) to write
the generated assembly code to the output file. Both readSrcLine() and printAsmLine(s)
should throw an exception if an error occurs while reading or writing.

In addition to the generated assembly code, we will want to include in the output file the
original source code as assembly-language comments to make the output easier to read.
So, besides just reading the input file, readSrcLine() should be able to automatically print
each input line to the output file as it is read, if requested by the user.

Instance variables echoing and echoPrefix should control whether the input lines
are printed to the output file, and how. If echoing is true, then each input line should be
written to the output file at the time it is read, with the echoPrefix string concatenated

CSE 413 – AU 02 – Programming Languages Homework 5

Page 2 of 2

to the front of it. The idea behind echoPrefix is that we can set it to something
appropriate so the echoed source program lines copied to the assembly language output
file are treated as comments in the generated program (more details in a future
assignment). You should provide methods to get and set both of these properties (void
setEchoing(boolean b), boolean getEchoing(), void
setEchoPrefix(String s), String getEchoPrefix()).

public static void main(String[] arg)

Class CompilerIO should include its own test program (method main). The test program
should accept zero, one or two file names as command line arguments and use the
appropriate constructors to create a CompilerIO object. If no file name is specified, your
main method can supply a default name (eg, CompilerIO.java). Once the files are open,
the test program should verify that the input and output methods of CompilerIO work
properly.

