
30-September-2002 cse413-01-Introduction © 2002 University of Washington 1

Introduction

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/



30-September-2002 cse413-01-Introduction © 2002 University of Washington 2

Readings and References
• Reading

» Sections 1-1.1.5, Structure and Interpretation of Computer
Programs, by Abelson, Sussman, and Sussman

• Other References
» Everything related to the class is available from the class

web site
http://www.cs.washington.edu/education/courses/413/02au/

» Section 2, Revised5 Report on the Algorithmic Language
Scheme (R5RS)



30-September-2002 cse413-01-Introduction © 2002 University of Washington 3

Elements of Programming
• Primitive expressions

» simplest entities of the language
• Means of combination

» by which compound elements are built
• Means of abstraction

» by which compound elements can be named and
manipulated as units



30-September-2002 cse413-01-Introduction © 2002 University of Washington 4

There are many "languages"
• Computer programming

» Basic, Cobol, C, Pascal, Ada, Java, Python, …
• Shell and scripting languages

» Perl, bash, AppleScript, JavaScript, ...
• Applications

» Photoshop, MS Office, Matlab, POVRay, ...
• Sciences

» DNA, Chemistry, Plant Growth, ...



30-September-2002 cse413-01-Introduction © 2002 University of Washington 5

Training and Education
• Training

» learn the specifics of a known language
» build up a "tool chest" so that you can perform

specific tasks in a particular field
• Education

» learn how to recognize valid abstractions and
synthesize them in new and useful ways in many
different knowledge domains

• We'll do some of both in this class



30-September-2002 cse413-01-Introduction © 2002 University of Washington 6

What is Scheme?
• Is Scheme a version of Lisp?

» Yes: Scheme has a strong syntactic resemblance to
Lisp. Editing Scheme on a computer is much
easier than editing most other syntaxes. Students
take about one day to learn the syntax, and can
then move on to learning real concepts.

» No: Beyond this, Scheme shares very little with
Lisp. Don't be mislead by the syntactic similarity;
Scheme is a fairly different language with a much
more refined and modern philosophy.

http://www.teach-scheme.org/Notes/scheme-faq.html



30-September-2002 cse413-01-Introduction © 2002 University of Washington 7

Why Scheme?
• The simplicity of the language lets us work on

problem solving, rather than just syntax issues
• Flexibility of the language lets us see that the

structure of C/Java/Basic is not the only way
to express problem solutions

• Variety is the spice of life
» study more than one language paradigm and study

the relationship between design paradigms
» professional programmers switch languages every

few years anyway, so start practicing now



30-September-2002 cse413-01-Introduction © 2002 University of Washington 8

Example DrScheme screen

Definitions window
enter programs here

Interactions window
enter expressions here



30-September-2002 cse413-01-Introduction © 2002 University of Washington 9

Definitions window
• Define programs in the Definitions window

» save the contents of the window to a file using
menu item File - Save Definitions As …

» load existing files with menu item File - Open
» execute the contents of the definitions window by

clicking on the "Execute" button
» check and highlight syntax by clicking on the

"Check Syntax" button



30-September-2002 cse413-01-Introduction © 2002 University of Washington 10

Interactions Window
• Evaluate simple expressions directly in the

Interactions window
• Position the cursor after the ">", then type in

your expression
» DrScheme responds by evaluating the expression

and printing the result
• Expressions can reference symbols defined

when you executed the Definitions window



30-September-2002 cse413-01-Introduction © 2002 University of Washington 11

Think functionally
• Programming that makes extensive use of

assignment is known as imperative programming
» The order of assignments changes the operation of the

program because the state is changed by assignment
• Programming without the use of assignment

statements is known as functional programming
» In such a language, all procedures implement well-

defined mathematical functions of their arguments
whose behavior does not change

» Scheme is heavily oriented towards functional style



30-September-2002 cse413-01-Introduction © 2002 University of Washington 12

Primitive Expressions
• constants

» integer : -1, 0 3
» rational : ½, ¾
» real : 0.333, 3.1415926535
» boolean : #t, #f

• variable names (symbols)
» Names can contain almost any character except

white space and parentheses
» Stick with simple names like value, x, iter, ...



30-September-2002 cse413-01-Introduction © 2002 University of Washington 13

Compound Expressions
• Either a combination or a special form
• Combination : (operator operand operand …)

» there are quite a few pre-defined operators
+, *, abs, sin, etc

» We can define our own operators
area-of-disk

• Special form
» keywords in the language
» eg, define



30-September-2002 cse413-01-Introduction © 2002 University of Washington 14

Combinations
• (operator operand operand …)
• this is prefix notation, the operator comes first
• a combination always denotes a procedure

application
• the operator is a symbol or an expression, the

applied procedure is the associated value
» +, -, abs, my-function, foop?
» characters like * and + are not special; if they do

not stand alone then they are part of some name



30-September-2002 cse413-01-Introduction © 2002 University of Washington 15

Evaluating Combinations
• To evaluate a combination

» Evaluate the subexpressions of the combination
» Apply the procedure that is the value of the leftmost

subexpression (the operator) to the arguments that are
the values of the other subexpresions (the operands)

• For example
» (* 5 99) is a combination consisting of three

subexpressions
» Scheme evaluates this combination and returns 495



30-September-2002 cse413-01-Introduction © 2002 University of Washington 16

Percolate values up a tree

Evaluate
(* (+ 2 (* 4 6))

(+ 3 5 7))



30-September-2002 cse413-01-Introduction © 2002 University of Washington 17

Evaluating Special Forms
• Special forms have unique evaluation rules
• (define x 3) is an example of a special

form; it is not a combination
» the evaluation rule for a simple define is "associate

the given name with the given value"
• There are more special forms which we will

encounter, but there are surprisingly few of
them compared to other languages


