
4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 1

More Procedures

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 2

Readings and References

• Reading
» Section 1.2-1.2.2, Structure and Interpretation of

Computer Programs, by Abelson, Sussman, and Sussman

• Other References
» Section 3, Revised5 Report on the Algorithmic Language

Scheme (R5RS)

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 3

Abstraction is a good thing

• The span of absolute judgment and the span of
immediate memory impose severe limitations on
the amount of information that we are able to
receive, process, and remember.

• By organizing the stimulus input simultaneously
into several dimensions and successively into a
sequence or chunks, we manage to break (or at
least stretch) this informational bottleneck.
» Miller, 1956. see OtherLinks page for reference

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 4

A clean abstraction is a good thing

• One of the interesting and difficult things
about software design is deciding how to chop
up the system design in a "logical" fashion

• "Common sense" design is not always obvious
• Two useful goals

» Increase Cohesion
» Decrease Coupling

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 5

Cohesion and Coupling

• Cohesion describes the degree to which the
various parts of a single conceptual object relate
to one another in a logical way
» a "cohesive design" is a good thing

• Coupling describes the degree to which different
conceptual objects are tied together through
implementation details and assumptions
» a "highly coupled design" is a bad thing

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 6

Name space pollution
• One common problem that contributes to

coupling between modules is naming
• As much as possible, you want to keep the

details of your implementation from leaking out
into the outside world
» reduce conflict with other modules and reduce the

complexity of your own design
» make it possible to replace your implementation

entirely with a new one that has the same external
interface but completely different internals

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 7

Procedure names

• Recall that sqrta.scm defined a number of
small auxiliary procedures to accomplish the
task of calculating the square root
» sqrt-iter, good-enough?, improve

• None of these procedures are of specific
interest to the outside world
» they interfere with other designs that want to build

other procedures with the same names
» the prefix "sqrt-" is clutter in our own design

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 8

Helper definitions local to procedure
(define (sqrtb x)

(define (good-enough? guess x)

(< (abs (- (* guess guess) x)) 0.001))

(define (improve guess x)

(/ (+ guess (/ x guess)) 2.0))

(define (iter guess x)

(if (good-enough? guess x)

guess

(iter (improve guess x) x)))

(iter 1.0 x))

; Square root using Newton's method
; using internal definitions to make
; the helper procedures local.

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 9

Local names

• The names of the helper procedures are now
local to the define statement for sqrt

• The scope of the names is the define block
• Notice that the scope of the names of the

formal parameters of each local procedure is
the body of that procedure
» the parameter names of a procedure are local to

the body of the procedure

Formal params are local

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 11

Parameter names are local
(define (sqrtc x)

(define (good-enough? ga xa)

(< (abs (- (* ga ga) xa)) 0.001))

(define (improve gb xb)

(/ (+ gb (/ xb gb)) 2.0))

(define (iter gc xc)

(if (good-enough? gc xc)

gc

(iter (improve gc xc) xc)))

(iter 1.0 x))

; Square root using Newton's method
; using internal definitions to make
; the helper procedures local.

; Replaced guess and x with ga, gb,
; gc and xa, xb, xc to highlight the fact
; that they are not all the same object.

Note that "x" is defined in the outer block
and so it is visible to all of the helper
procedures.

Do we need to pass x around from
procedure to procedure?

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 12

Refer to variables in enclosing scope
(define (sqrtc x)

(define (good-enough? ga xa)

(< (abs (- (* ga ga) xa)) 0.001))

(define (improve gb xb)

(/ (+ gb (/ xb gb)) 2.0))

(define (iter gc xc)

(if (good-enough? gc xc)

gc

(iter (improve gc xc) xc)))

(iter 1.0 x))

• xc is supplied to iter as a parameter.
• The value of that parameter is "x".
• iter calls itself recursively, and supplies the

same value of "x" that it was given.
• Therefore, the value of "xc" is always "x",

and we don't need to pass it as a parameter
to procedure iter.

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 13

Refer to variables in enclosing scope

(define (sqrtd1 x)

(define (good-enough? ga xa)

(< (abs (- (* ga ga) xa)) 0.001))

(define (improve gb xb)

(/ (+ gb (/ xb gb)) 2.0))

(define (iter gc)

(if (good-enough? gc x)

gc

(iter (improve gc x))))

(iter 1.0))

• xa is supplied to good-enough? as a
parameter.

• The value of that parameter is always "x".
• Therefore, we don't need to pass it as a

parameter to procedure good-enough?.

• xb is supplied to improve as a parameter.
• The value of that parameter is always "x".
• Therefore, we don't need to pass it as a

parameter to procedure improve.

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 14

All x parameters replaced with global x
(define (sqrtd2 x)

(define (good-enough? ga)

(< (abs (- (* ga ga) x)) 0.001))

(define (improve gb)

(/ (+ gb (/ x gb)) 2.0))

(define (iter gc)

(if (good-enough? gc)

gc

(iter (improve gc))))

(iter 1.0))

; Square root using Newton's method.
; Removed all the x parameters since they
; refer to the globally available x in
; every case.

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 15

Lexical scoping

• The preceding changes to the sqrt definition
are examples of the use of lexical scoping

• Free variables (those that are not bound by the
parameter list or a local define) are taken to
refer to bindings made by enclosing procedure
definitions

• The bindings are looked up in the environment
in which the procedure was defined

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 16

Recursion and Iteration
• Definitions

» procedure (the text definition)
» process (the actual live action events)

• A recursive procedure (one that calls itself)
does not necessarily generate a recursive
process (one that has an open deferred
operations remaining for each call)

• Many languages make the two always
equivalent, but it is not necessary

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 17

Two implementations of factorial
; linear recursive

(define (facta n)

(if (= n 1)

1

(* n (facta (- n 1)))))

; iterative

(define (factb n)

(define (iter prod count)

(if (> count n)

prod

(iter (* count prod) (+ count 1))))

(iter 1 1))

We don't know what (facta (- n 1)) is until
we have worked our way all the way down
to facta(1). All the multiplications are
deferred operations.

We are counting up. We know what
1*1 is, and we know what 1+1 is. So
we can go directly from (iter 1 1) to
(iter 1 2) to (iter 2 3) to (iter 6 4) etc.

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 18

Difference

• The key difference between the linear recursive
process and the iterative process is this
» recursive - there are operations not yet completed

which must be remembered by the system running
the program - generally on a stack

» iterative - all of the state for the block of code can be
captured in a finite set of variables - these variables
are the arguments to the iterating function

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 19

Two implementations of simple counter
(define (print x)

(display x))

; iterative process

(define (count1 x)

(cond ((= x 0) (print x))

(else (print x)

(count1 (- x 1)))))

; linear recursive process

(define (count2 x)

(cond ((= x 0) (print x))

(else (count2 (- x 1))

(print x))))

> (count1 4)
43210
> (count2 4)
01234
>

why?

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 20

Fibonacci Numbers
• Recall definition of Fibonacci numbers Fn

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

» First two are defined explicitly
» Rest are sum of preceding two
» Fn = Fn-1 + Fn-2 (n > 1)
» sequence sometimes starts with 1, not 0

Leonardo Pisano
Fibonacci (1170-1250)

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 21

Recursive Calls of Fibonacci Procedure

• Re-computes fib(N-i) multiple times

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 22

Two implementations of Fibonacci
; tree recursive

(define (fib-a n)

(cond ((= n 0) 0)

((= n 1) 1)

(else (+ (fib-a (- n 1))

(fib-b (- n 2))))))

; iterative

(define (fib-b n)

(define (iter a b count)

(if (= count 0)

b

(iter (+ a b) a (- count 1))))

(iter 1 0 n))

4-October-2002 cse413-03-MoreProcedures © 2002 University of Washington 23

Two implementations of Fibonacci
// tree recursive
int fib(int i) {
if (i < 0) return 0;
if (i == 0 || i == 1)
return 1;

else
return fib(i-1)+fib(i-2);

}

// iterative
int fib_iter(int i) {

int fib0 = 1, fib1 = 1, fibj = 1;
if (i < 0) return 0;
for (int j = 2; j <= i; j++) {
fibj = fib0 + fib1;
fib0 = fib1;
fib1 = fibj;

}
return fibj;

}

