
11-October-2002 cse413-06-Pairs © 2002 University of Washington 1

Pairs

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

11-October-2002 cse413-06-Pairs © 2002 University of Washington 2

Readings and References

• Reading
» Sections 2-2.1.3, Structure and Interpretation of Computer

Programs, by Abelson, Sussman, and Sussman

• Other References
» Section 6.3.2, Revised5 Report on the Algorithmic

Language Scheme (R5RS)

11-October-2002 cse413-06-Pairs © 2002 University of Washington 3

Procedural abstractions

• So far, we have talked about primitive data
elements and done various levels of
abstraction using procedures only
» This is a key capability in being able to recognize

and implement common behaviors
• The ability to combine data elements will

further extend our ability to model the world

11-October-2002 cse413-06-Pairs © 2002 University of Washington 4

Compound data
• In order to build compound structures we need

a way to combine elements and refer to them
as a single blob

• We can write a lambda expression that
combines one or more expressions
» the resulting combination is a procedure

• We can write a cons expression that ties two
data elements together
» the resulting combination is a pair

11-October-2002 cse413-06-Pairs © 2002 University of Washington 5

(cons a b)

• Takes a and b as args, returns a compound
data object that contains a and b as its parts

• We can extract the two parts with accessor
functions car and cdr ("could-er")

1 2

(define a (cons 1 2)) a

11-October-2002 cse413-06-Pairs © 2002 University of Washington 6

car and cdr

1 2

(define a (cons 1 2))
a

(car (cons 3 4))

(cdr (cons 3 4))

(car a)

(cdr a)

3 4

(cdr a)(car a)

11-October-2002 cse413-06-Pairs © 2002 University of Washington 7

car and cdr

(define a (cons 1 2))

1 2

a

3

b

1 2

a

(define b (cons a 3))

(car (car b))
(cdr (car b))
(cdr b)

11-October-2002 cse413-06-Pairs © 2002 University of Washington 8

(car (cdr c))

(define c (cons (cons 1 2) (cons 3 4)))

c

1 2

(car (car c))
(cdr (car c))
(car (cdr c))
(cdr (cdr c)) 3 4

(cdr c)

car

11-October-2002 cse413-06-Pairs © 2002 University of Washington 9

(cadr c)

• We can abbreviate the repeated use of car and cdr

c

1 2

(caar c)
(cdar c)
(cadr c)
(cddr c) 3 4

(cdr c)

car

(define c (cons (cons 1 2) (cons 3 4)))

11-October-2002 cse413-06-Pairs © 2002 University of Washington 10

pair? predicate

• (pair? z) is true if z is a pair

c

1 2

(pair? c)
(pair? (car c))
(pair? (cdr c))
(pair? (caar c))
(pair? (cdar c)) 3 4

(car c)

(define c (cons (cons 1 2) (cons 3 4)))

cdr

11-October-2002 cse413-06-Pairs © 2002 University of Washington 11

nil
• if there is no element present for the car or cdr

branch of a pair, we indicate that with the
value nil
» nil (or null) represents the empty list '()

• (null? z) is true if z is nil

(define d (cons 1 '()))
(car d)
(cdr d)
(null? (car d))
(null? (cdr d))

1

d

11-October-2002 cse413-06-Pairs © 2002 University of Washington 12

(cons 1 (cons 2 (cons 3 '())))

(define e (cons 1 (cons 2 (cons 3 '()))))

e

1

2

3

(car e)
(car (cdr e))
(car (cddr e))

(define (zip z)
(if (pair? z)

(begin
(display (car z))
(display " ")
(zip (cdr z)))

(newline)))

11-October-2002 cse413-06-Pairs © 2002 University of Washington 13

Email from Steve Russell
• I wrote the first implementation of a LISP interpreter on the IBM 704 at MIT in

early in 1959. I hand-compiled John McCarthy's "Universal LISP Function".
• The 704 family (704, 709, 7090) had "Address" and "Decrement" fields that were

15 bits long in some of the looping instructions. There were also special load and
store instructions that moved these 15-bit addresses between memory and the index
registers (3 on the 704, 7 on the others)

• We had devised a representation for list structure that took advantage of these
instructions.

• Because of an unfortunate temporary lapse of inspiration, we couldn't think of any
other names for the 2 pointers in a list node than "address" and "decrement", so we
called the functions CAR for "Contents of Address of Register" and CDR for
"Contents of Decrement of Register".

• After several months and giving a few classes in LISP, we realized that "first" and
"rest" were better names, and we (John McCarthy, I and some of the rest of the AI
Project) tried to get people to use them instead.

• Alas, it was too late! We couldn't make it stick at all. So we have CAR and CDR.
http://home.planet.nl/~faase009/HaCAR_CDR.html

11-October-2002 cse413-06-Pairs © 2002 University of Washington 14

What do we really know about pairs?
• An Application Programming Interface (API)

» cons - constructor
» car, cdr - accessor functions

• We may think we know how they are stored
» box-and-pointer drawings
» pointers to pointer blocks ...

• But if we can stay at the API level, the
separation between layers of implementation
can stay clean which is a "good thing"

11-October-2002 cse413-06-Pairs © 2002 University of Washington 15

"Need to know" only
• As much as possible, the API should only expose

the functions that the user needs in order to
accomplish tasks with the logical data object we
are defining
» If the implementation does not expose unnecessary

details, then the user won't use them and you won't be
stuck with them forever

• You want to be able to jack up the house and roll
in a completely different foundation
» think about the evolution of device drivers
» open, read, write, status, control, close

11-October-2002 cse413-06-Pairs © 2002 University of Washington 16

Can we implement cons/car/cdr?
• If we focus on the behaviors that are defined

what do we actually need to do?
• (cons a b)

» define something that can be used later to extract a
and b

• (car something)

» recover a from something
• (cdr something)

» recover b from something

11-October-2002 cse413-06-Pairs © 2002 University of Washington 17

something

• We tend to think of the something returned by
cons as a structured data variable of some sort

• However, the only actual requirement on
something is that we can recover a and b from it
using procedures named car and cdr

• How about we use a procedure definition for
something ...

11-October-2002 cse413-06-Pairs © 2002 University of Washington 18

Procedural representation of pairs

(define (cons x y)

(lambda (m) (m x y)))

(define (car z)

(z (lambda (p q) p)))

(define (cdr z)

(z (lambda (p q) q)))

(define a (cons 1 2))
(car a)
(cdr a)

11-October-2002 cse413-06-Pairs © 2002 University of Washington 19

(cons a b)

• Takes a and b as args, returns a compound
data object (aka something) that contains a and
b as its parts

• We can extract the two parts with accessor
functions car and cdr ("could-er")

1 2

(define a (cons 1 2))
(car a)
(cdr a)

a

car

» a procedure that takes one argument (the function defined by cons) and
applies that function to a function that takes two arguments and returns
the first one

(define (car z)

(z (lambda (p q) p)))

(define (cons x y)

(lambda (m) (m x y)))

cons

» a procedure that takes two arguments x and y and returns a procedure
» the returned procedure takes one argument (a function) and applies that

function to the values of x and y

Procedural cons and car

11-October-2002 cse413-06-Pairs © 2002 University of Washington 21

Lexical closure
• Take another look at the definition of cons

• Where did the values of x and y come from?
» the initial call to cons, the definition call

• Are they still around when we call car and
cdr?
» yes, they are part of the environment that is stored

by the lambda definition statement in cons

(define (cons x y)

(lambda (m) (m x y)))

(define (car z)

(z (lambda (p q) p)))

11-October-2002 cse413-06-Pairs © 2002 University of Washington 22

current symbol definitions

• Lambda expressions evaluate to what is called
a lexical closure
» a coupling of code and a lexical environment (a

scope)
» The lexical environment is necessary because the

code needs a place to look up the definitions of
symbols it references

11-October-2002 cse413-06-Pairs © 2002 University of Washington 23

definition and execution

• x and y are referenced in the environment of
the lambda expression's definition
» its lexical environment, which is in the definition

of cons

• not the environment of its execution
» its dynamic environment, which is in car

(define (cons x y)

(lambda (m) (m x y)))

