
16-October-2002 cse413-08-Structures © 2002 University of Washington 1

Hierarchical Structures

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

16-October-2002 cse413-08-Structures © 2002 University of Washington 2

Readings and References

• Reading
» Section 2.2.2, Structure and Interpretation of Computer

Programs, by Abelson, Sussman, and Sussman

• Other References

16-October-2002 cse413-08-Structures © 2002 University of Washington 3

Lists are a basic abstraction

• Using list to build lists, we can build data
structures of increasing complexity

• Nested lists
» one or more of the elements of the list are

themselves lists
» (list 1 2 (list 3 4) 5)

16-October-2002 cse413-08-Structures © 2002 University of Washington 4

List structure

4

5

6

(define a (list 4 5 6))

a

(define b (list 7 a 8))

4

5

6

a

7

8

b

car = "this element"
cdr = "rest of the elements"

16-October-2002 cse413-08-Structures © 2002 University of Washington 5

Printed representation of a list

• Lists are so fundamental to Scheme that the
interpreter assumes that any data structure that
uses pairs is probably a list

• The printed representation of a pair uses a “.”
to separate the car and the cdr elements
» (cons 3 4) => (3 . 4)

• But when printing a list, the complexity of the
pair is suppressed for clarity when possible
» (cons 3 ‘()) => (3)

16-October-2002 cse413-08-Structures © 2002 University of Washington 6

Printing pairs and lists

(cons 3 4) => (3 . 4)

3 4

(cons 3 ‘()) => (3)

3

this is a well formed listthis is a valid data structure,
but it is not a well formed list

16-October-2002 cse413-08-Structures © 2002 University of Washington 7

List structure

4

6

(list 4 6) => (4 6)

(list 2 4 6) => (2 4 6)

2

4

6

(list 2 (list 4 6)) => (2 (4 6))

4

6

2

16-October-2002 cse413-08-Structures © 2002 University of Washington 8

List structure and cons

2

4

6

(cons 2 (list 4 6)) => (2 4 6)

(list 2 (list 4 6)) => (2 (4 6))

4

6

2

16-October-2002 cse413-08-Structures © 2002 University of Washington 9

Recursive tree structure
(list 2 (list 4 6)) => (2 (4 6))

• This list has two elements
» the literal 2 and the list (4 6)

• The sublist also has two elements
» the literals 4 and 6

• We can think of lists, and lists of
lists, as tree structures
» all the elements in one list are siblings

(2 (4 6))

2

4 6

(4 6)

16-October-2002 cse413-08-Structures © 2002 University of Washington 10

(depth x)
; x is a tree node. It is defined by a

; list that contains the node at this entry,

; plus all the the sibling tree nodes to the

; right of this node.

; The value at this node is (car x).

; The list of siblings to the right is (cdr x).

(define (depth x)

(cond ((null? x) 0)

((not (pair? x)) 0)

(else (max (+ 1 (depth (car x)))

(depth (cdr x))))))

(2 (4 6))

2

4 6

(4 6)

(2 (4 6))

4

6

2

16-October-2002 cse413-08-Structures © 2002 University of Washington 11

(fringe x)
; pick the leaves off a tree defined as lists of lists

(define (fringe m)

(cond

((null? m) m)

((not (pair? m)) (list m))

(else (append (fringe (car m)) (fringe (cdr m))))))

(2 (4 6))

4

6

2

(2 4 6)

4

6

2(fringe x)

16-October-2002 cse413-08-Structures © 2002 University of Washington 12

Further abstraction

• The more we can map into the problem
domain the better

• A layer of abstraction can hide much or all of
the messy details of implementation
» easier to understand
» easier to replace the implementation

• Lists are an abstraction of a pair structure
• Trees are an abstraction of a list structure

16-October-2002 cse413-08-Structures © 2002 University of Washington 13

Expression trees

• In Scheme, we often use constructors and
accessors to abstract away the underlying
representation of data (which is usually a list)

• For example, consider arithmetic expression trees
• A binary expression is

» an operator: +, -, *, / and two operands
• An operand is

» a number or another expression

16-October-2002 cse413-08-Structures © 2002 University of Washington 14

Expression tree example

(1 + (2 * (3 - 5)))infix notation

(+ 1 (* 2 (- 3 5)))Scheme expression
+

1 *

2 -

3 5

expression tree

16-October-2002 cse413-08-Structures © 2002 University of Washington 15

Represent expression with a list
• For this example, we are restricting the type of

expression somewhat
» Operators in the tree are all binary
» All of the leaves (operands) are numbers

• Each node is represented by a 3-element list
» (operator left-operand right-operand)

• Recall that the operands can be
» numbers (explicit values)
» other expressions (lists)

16-October-2002 cse413-08-Structures © 2002 University of Washington 16

Expressions as trees, trees as lists
+

1 *

2 -

3 5

logical expression tree

(list + 1 (list * 2 (list - 3 5)))

+

our data structure

(1+(2*(3-5)))

1

*

2

-

3

5

16-October-2002 cse413-08-Structures © 2002 University of Washington 17

Constructors and accessors

(define (make-exp op left right)

(list op left right))

(define (operator exp)

(car exp))

(define (left exp)

(cadr exp))

(define (right exp)

(caddr exp))

(define a (make-exp + 1 2))

+

1 2

+

1

2

16-October-2002 cse413-08-Structures © 2002 University of Washington 18

Evaluator

(define (eval-expr exp)

(if (not (pair? exp))

exp

((operator exp)

(eval-expr (left exp))

(eval-expr (right exp)))))

+

1

2

; note that this code expects the operators
; to be the actual functions, not text symbols

(eval-expr (make-exp + 1 2))

