Hierarchical Structures

CSE 413, Autumn 2002

Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

16-October-2002 cse413-08-Structures © 2002 University of Washington

Readings and References

* Reading

» Section 2.2.2, Structure and Interpretation of Computer
Programs, by Abelson, Sussman, and Sussman

e Other References

16-October-2002 cse413-08-Structures © 2002 University of Washington

[ists are a basic abstraction

 Using 1ist to build lists, we can build data
structures of increasing complexity

 Nested lists

» one or more of the elements of the list are
themselves lists
» (list 1 2 (list 3 4) 5)

16-October-2002 cse413-08-Structures © 2002 University of Washington

[1st structure

(define a (list 4 5 6)) (define b (list 7 a 8))
a b
ol e o e
v Y
4 s e 7 s e
v
S » »
v Y
6 a > [o]a 8
Y
4 o e
Y
> »
car = "this element" "4
cdr = "rest of the elements" 6

16-October-2002 cse413-08-Structures © 2002 University of Washington

Printed representation of a list

 Lists are so fundamental to Scheme that the
interpreter assumes that any data structure that
uses pairs 1s probably a list

¢¢ 9

* The printed representation of a pair uses a «.

to separate the car and the cdr elements
> (cons 3 4) => (3 . 4)

* But when printing a list, the complexity of the

pair 1s suppressed for clarity when possible
» (cons 3 '()) => (3)

16-October-2002 cse413-08-Structures © 2002 University of Washington

Printing pairs and lists

(cons 3 4) => (3 . 4) (cons 3 ‘()) => (3)
v
o e »
¥ ¥
3 4 3
this 1s a valid data structure, this 1s a well formed list

but it is not a well formed list

16-October-2002 cse413-08-Structures © 2002 University of Washington

[1st structure

(list 4 6) => (4 6)

ol e
¥
: " (list 2 (list 4 6)) => (2 (4 6))
6 v
sle
¥
2 .
(list 2 4 6) => (2 4 6)
/pq
/pq 2 .
2 s e 6’/
¥
4 »
¥
6

16-October-2002 cse413-08-Structures © 2002 University of Washington

[ist structure and cons

(list 2 (list 4 6)) => (2 (4 6))

v
ole
¥
2 .
/’ e (cons 2 (list 4 6)) => (2 4 6)
4 »
4 ole
6 Y
2 o e
¥
4 »
¥
6

16-October-2002 cse413-08-Structures © 2002 University of Washington

Recursive tree structure

(list 2 (list 4 6)) => (2 (4 6))

e This list has two elements
» the literal 2 and the list (4 6)

* The sublist also has two elements (2 (4 6))

» the literals 4 and 6 /X .
 We can think of lists, and lists of 2

lists, as tree structures 46

» all the elements 1n one list are siblings

16-October-2002 cse413-08-Structures © 2002 University of Washington 9

(depth x)

we we we e “e

e

(define (depth x)

X is a tree node. It is defined by a

list that contains the node at this entry,
plus all the the sibling tree nodes to the
right of this node.

The value at this node is (car x).

The list of siblings to the right is (cdr x).

(cond ((null? x) 0)
((not (pair? x)) 0)

(else (max (+ 1 (depth (car x)))

(depth (cdr x))))))

(2 (4 6))
(4 6)
2
4 6
(2 (4 6))
v
sle
¥
2 .
sl e
¥
4 »
¥
6

16-October-2002

cse413-08-Structures © 2002 University of Washington

10

(fringe x)

; pick the leaves off a tree defined as lists of lists
(define (fringe m)
(cond
((null? m) m)
((not (pair? m)) (list m))
(else (append (fringe (car m)) (fringe (cdr m))))))

(2 (4 6))
I (2 4 6)
ALY
’/ /’ Q
2 .
(fringe x)> 2 ol e
e /
4 »
i /
4 o :
¥
6

16-October-2002 cse413-08-Structures © 2002 University of Washington

Further abstraction

* The more we can map into the problem
domain the better

* A layer of abstraction can hide much or all of
the messy details of implementation

» easier to understand

» easier to replace the implementation
 Lists are an abstraction of a pair structure
* Trees are an abstraction of a list structure

16-October-2002 cse413-08-Structures © 2002 University of Washington

Expression trees

* In Scheme, we often use constructors and
accessors to abstract away the underlying
representation of data (which 1s usually a list)

* For example, consider arithmetic expression trees
* A binary expression 1s
» an operator: +, -, *, / and two operands

* An operand 1s

» a number or another expression

16-October-2002 cse413-08-Structures © 2002 University of Washington 13

Expression tree example

infix notation (L+ (2* (3-25)))
Scheme expression (+ 1 (* 2 (- 3 5)))
1

expression tree

16-October-2002 cse413-08-Structures © 2002 University of Washington 14

Represent expression with a list

 For this example, we are restricting the type of
expression somewhat

» Operators 1n the tree are all binary

» All of the leaves (operands) are numbers
* Each node 1s represented by a 3-element list
» (operator left-operand right-operand)

» Recall that the operands can be
» numbers (explicit values)

» other expressions (lists)

16-October-2002 cse413-08-Structures © 2002 University of Washington 15

Expressions as trees, trees as lists

IR
¥
1 + ol e
¥
1 .
? y
IR
3 5 ’/
* o e
. . ¥
logical expression tree 2 °
(1+(2*(3-5))) >/
0| e
¥
- 0| e
¥
our data structure 3 A
(list + 1 (list * 2 (list - 3 5))) K/
5

16-October-2002 cse413-08-Structures © 2002 University of Washington

Constructors and accessors

(define (make-exp op left right)
(list op left right))

(define (operator exp)

car ex
(p)) (define a (make-exp + 1 2))

(define (left exp) ¢
(cadr exp)) Kf =
S
(define (right exp) . ’ f/ .
(caddr exp)) K/
2

16-October-2002 cse413-08-Structures © 2002 University of Washington 17

Evaluator

(eval-expr (make-exp + 1 2))

(define (eval-expr exp)

o e
(if (not (pair? exp)) Y
ax + o e
P ¥
((operator exp) 1 »
(eval-expr (left exp)) //
2

(eval-expr (right exp)))))

; note that this code expects the operators
; to be the actual functions, not text symbols

16-October-2002 cse413-08-Structures © 2002 University of Washington

18

