
18-October-2002 cse413-09-Symbols © 2002 University of Washington 1

Symbols

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

18-October-2002 cse413-09-Symbols © 2002 University of Washington 2

Readings and References

• Reading
» Section 2.3.1, Structure and Interpretation of Computer

Programs, by Abelson, Sussman, and Sussman

• Other References
» Sections 4.1.2, 6.1, 6.3.3, Revised5 Report on the

Algorithmic Language Scheme (R5RS)

18-October-2002 cse413-09-Symbols © 2002 University of Washington 3

Evaluating symbols and expressions

• We've been using symbols and lists of symbols
to refer to values of all kinds in our programs

• Scheme evaluates the symbols and lists that we
give it
» numbers evaluate to themselves
» symbols evaluate to their current value
» lists are evaluated as expressions defining procedure

calls on a sets of actual arguments

(+ a 3)
(inc b)

18-October-2002 cse413-09-Symbols © 2002 University of Washington 4

Manipulating symbols, not values

• What if we want to manipulate the symbols,
and not the value of the symbols
» perhaps evaluate after all the manipulation is done

• We need a way to say "use this symbol or list
as it is, don’t evaluate it"

• Special form quote
>(define a 1)

>a => 1

>(quote a) => a

18-October-2002 cse413-09-Symbols © 2002 University of Washington 5

Special form: quote

(quote 〈〈〈〈datum〉〉〉〉)

or '〈〈〈〈datum〉〉〉〉

• This expression always evaluates to datum
» datum is the external representation of the object

• The quote form tells Scheme to treat the
given expression as a data object directly,
rather than as an expression to be evaluated

18-October-2002 cse413-09-Symbols © 2002 University of Washington 6

Quote examples
(define a 1)

a => 1

(quote a) => a

(define b (+ a a))

b => 2

(define c (quote (+ a b)))

c => (+ a b)

(car c) => +

(cadr c) => a

(caddr c) => b

a is a symbol whose value
is the number 1

b is a symbol whose value
is the number 2

c is a symbol whose value
is the list (+ a b)

18-October-2002 cse413-09-Symbols © 2002 University of Washington 7

quote can be abbreviated: '

'a => a

'(+ a b) => (+ a b)

'() => ()

(null? '()) => #t

'(1 (2 3) 4) => (1 (2 3) 4)

'(a (b (c))) => (a (b (c)))

(car '(1 (2 3) 4)) => 1

(cdr '(1 (2 3) 4)) => ((2 3) 4)

a single quote has the exact
same effect as the quote form

lists are easily expressed as
quoted objects

18-October-2002 cse413-09-Symbols © 2002 University of Washington 8

Building lists with symbols

• What would the interpreter print in response to
evaluating each of the following expressions?

(list 'a 'b)

(cons 'a (list 'b))

(cons 'a (cons 'b '()))

(cons 'a '(b))

'(a b)

a

b

(a b)

18-October-2002 cse413-09-Symbols © 2002 University of Washington 9

Building lists with symbols
• What would the interpreter print in response to

evaluating each of the following expressions?

(cons '(a) '(b))

(list '(a) '(b))

b

((a) b)

a

((a) (b))

a

b

18-October-2002 cse413-09-Symbols © 2002 University of Washington 10

Comparing items
• Scheme provides several different means of

comparing objects
» Do two numbers have the same value?

(= a b)

» Are two objects the same object?
(eq? a b), (eqv? a b)

» Are the corresponding elements the same objects?
Comparison is done recursively if elements are lists.
(equal? list-a list-b)

18-October-2002 cse413-09-Symbols © 2002 University of Washington 11

(member item s)

; find an item of any kind in a list s

; return the sublist that starts with the item

; or return #f

(define (member item s)

(cond

((null? s) #f)

((equal? item (car s)) s)

(else (member item (cdr s)))))

(member 'a '(c d a)) => (a)
(member '(1 3) '(1 (1 3) 3)) => ((1 3) 3)
(member 'b '(a (b) c)) => #f

18-October-2002 cse413-09-Symbols © 2002 University of Washington 12

Recall: Expression tree example

(1 + (2 * (3 - 5)))infix notation

(+ 1 (* 2 (- 3 5)))Scheme expression
+

1 *

2 -

3 5

expression tree

18-October-2002 cse413-09-Symbols © 2002 University of Washington 13

Represent expression with a list
• Each node is represented by a 3-element list

» (operator left-operand right-operand)
• Operands can be

» numbers (explicit values)
» other expressions (lists)

• In previous implementation, operators were the
actual procedures
» This time, we will use symbols throughout

18-October-2002 cse413-09-Symbols © 2002 University of Washington 14

Expressions as trees, trees as lists
+

1 *

2 -

3 5

logical expression tree

'(+ 1 (* 2 (- 3 5)))

+

our data structure

(1+(2*(3-5)))

1

*

2

-

3

5

18-October-2002 cse413-09-Symbols © 2002 University of Washington 15

eval-expr

(define (eval-op op)

(cond

((eq? op '+) +)

((eq? op '-) -)

((eq? op '/) /)

((eq? op '*) *)))

(define (eval-expr exp)

(if (not (pair? exp))

exp

((eval-op (operator exp))

(eval-expr (left exp))

(eval-expr (right exp)))))

+

1

2

(eval-expr '(+ 1 2))

18-October-2002 cse413-09-Symbols © 2002 University of Washington 16

evaluator

(define (evaluator exp)

(if (not (pair? exp))

exp

((eval (operator exp))

(eval-expr (left exp))

(eval-expr (right exp)))))

+

1

2

(evaluator '(+ 1 2))

18-October-2002 cse413-09-Symbols © 2002 University of Washington 17

Traversing a binary tree

• Recall the definitions of traversal
» pre-order

this node, left branch, right branch

» in-order
left branch, this node, right branch

» post-order
left branch, right branch, this node

+

1 *

2 -

3 5

(1+(2*(3-5)))

18-October-2002 cse413-09-Symbols © 2002 University of Washington 18

 Traverse the expression tree

(define (in-order exp)

(if (not (pair? exp))

(list exp)

(append (in-order (left exp))

(list (operator exp))

(in-order (right exp)))))

(define (post-order exp)

(if (not (pair? exp))

(list exp)

(append (post-order (left exp))

(post-order (right exp))

(list (operator exp)))))

(define f '(+ 1 (* 2 (- 3 5))))

(in-order f)
(1 + 2 * 3 - 5)

(post-order f)
(1 2 3 5 - * +)

