Symbols

CSE 413, Autumn 2002

Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

18-October-2002 cse413-09-Symbols © 2002 University of Washington 1

Readings and References

* Reading

» Section 2.3.1, Structure and Interpretation of Computer
Programs, by Abelson, Sussman, and Sussman

e Other References

» Sections 4.1.2, 6.1, 6.3.3, Revised5 Report on the
Algorithmic Language Scheme (R5RS)

18-October-2002 cse413-09-Symbols © 2002 University of Washington

Evaluating symbols and expressions

* We've been using symbols and lists of symbols

to refer to values of all kinds in our programs
(+ a 3)
(inc b)

* Scheme evaluates the symbols and lists that we
give it
» numbers evaluate to themselves
» symbols evaluate to their current value

» lists are evaluated as expressions defining procedure
calls on a sets of actual arguments

Manipulating symbols, not values

18-October-2002 cse413-09-Symbols © 2002 University of Washington 3

* What if we want to manipulate the symbols,
and not the value of the symbols

» perhaps evaluate after all the manipulation is done

* We need a way to say "use this symbol or list
as it is, don’t evaluate it"

* Special form quote
>(define a 1)
>a => 1

>(quote a) => a

18-October-2002 cse413-09-Symbols © 2002 University of Washington

Special form: quote Quote examples

(define a 1)
(quo te <da tum>) a => 1 a is a symbol whose value
or '(datum) (quote a) - a is the number 1
(define b (+ a a)) b is a symbol whose value
. . b => 2 is the number 2
 This expression always evaluates to datum
» datum is the external representation of the object (define ¢ (quote (+ a b)(” o)
c => (+ a
* The quote form tells Scheme to treat the (car c) => + ¢ is a symbol whose value
. . d t b td tl (cadr c) => a is the list (+ a b)
grven exXpression as a data ooject directly, (caddr c) - b
rather than as an expression to be evaluated
18-October-2002 cse413-09-Symbols © 2002 University of Washington 5 18-October-2002 cse413-09-Symbols © 2002 University of Washington
. 0
quote can be abbreviated: Building lists with symbols
. . » What would the interpreter print in response to
'(+ a b) => (+ a b) a single quoto bas the cxact evaluating each of the following expressions?
" - 0 same ettect as the quote form
(null? '()) => #t
(list 'a 'b)
(1 (2 3) 4) => (1 (2 3) 4) . . (a b)
, lists are easily expressed as .
(a (b (c))) => (a (b (c))) quoted objects (cons 'a (list 'b))
(car '(1 (2 3) 4)) =>1 ol
(cdr '(1 (2 3) 4)) => ((2 3) 4) (cons 'a (cons 'b ' ()))
[a] [sl]
(cons 'a '(b))
[b]

'(a b)

18-October-2002 cse413-09-Symbols © 2002 University of Washington 7 18-October-2002 cse413-09-Symbols © 2002 University of Washington 8

Building lists with symbols

* What would the interpreter print in response to
evaluating each of the following expressions?

v
(o] o
(cons '(a) ' (b)) ((a) b) (sl [l
[a] [b]
(list '(a) '(b)) ((a) (b))
18-October-2002 cse413-09-Symbols © 2002 University of Washington 9

Comparing items

* Scheme provides several different means of
comparing objects
» Do two numbers have the same value?
(= a b)
» Are two objects the same object?
(eg? a b), (eqv? a b)

» Are the corresponding elements the same objects?
Comparison is done recursively if elements are lists.
(equal? list-a list-b)

18-October-2002 cse413-09-Symbols © 2002 University of Washington 10

(member item 8)

; find an item of any kind in a list s
; return the sublist that starts with the item
; or return #£

(define (member item s)
(cond
((null? s) #f£f)
((equal? item (car s)) s)

(else (member item (cdr s)))))

(member 'a '(c 4 a)) => (a)

(member '(1 3) '(1 (1 3) 3)) => ((1 3) 3)

(member 'b '(a (b) ¢)) => #£

18-October-2002 cse413-09-Symbols © 2002 University of Washington 11

Recall: Expression tree example

infix notation (L+ (2* (3-5)))
Scheme expression (+1 (2 (-3 5)))
1

expression tree

18-October-2002 cse413-09-Symbols © 2002 University of Washington 12

Represent expression with a list

Expressions as trees, trees as lists

» Each node is represented by a 3-element list

» (operator left-operand right-operand)
* Operands can be

» numbers (explicit values)

» other expressions (lists)
* In previous implementation, operators were the

actual procedures

» This time, we will use symbols throughout

[

3 5

logical expression tree
(1+(2*(3-5)))

our data structure

'(+ 1 (* 2 (- 3 5)))

18-October-2002 cse413-09-Symbols © 2002 University of Washington 13

18-October-2002 cse413-09-Symbols © 2002 University of Washington 14

eval-expr

evaluator

(define (eval-op op) (eval-expr '(+ 1 2))
(cond
((eg? op '+) +)
((eg? op '-) -)
((eg? op '/) /)
((eg? op '*) *)))

(define (eval-expr exp)

(if (not (pair? exp))
exp
((eval-op (operator exp))
(eval-expr (left exp))
(eval-expr (right exp)))))

18-October-2002 cse413-09-Symbols © 2002 University of Washington 15

(define (evaluator exp) (evaluator !(+ 1 2))

(if (not (pair? exp))
exp
((eval (operator exp))
(eval-expr (left exp))
(eval-expr (right exp)))))

18-October-2002 cse413-09-Symbols © 2002 University of Washington 16

Traversing a binary tree

» Recall the definitions of traversal

» pre-order
this node, left branch, right branch

» in-order 1
left branch, this node, right branch

» post-order
left branch, right branch, this node

(1+(2*(3-5)))

Traverse the expression tree

18-October-2002 cse413-09-Symbols © 2002 University of Washington

(define £ '"(+ 1 (* 2 (- 3 5))))

(define (in-order exp)
(if (not (pair? exp))
(list exp)
(append (in-order (left exp))
(list (operator exp))
(in-order (right exp)))))

(in-order f£)
(L +2 * 3 - 5)

(define (post-order exp)
(if (not (pair? exp))
(list exp) (post-order f)
(append (post-order (left exp)) (L 235 - * +)
(post-order (right exp))
(list (operator exp)))))

18-October-2002 cse413-09-Symbols © 2002 University of Washington 18

