
21-October-2002 cse413-10-IO © 2002 University of Washington 1

Input / Output

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

21-October-2002 cse413-10-IO © 2002 University of Washington 2

Readings and References

• Reading

• Other References
» Section 6.6, Revised5 Report on the Algorithmic Language

Scheme (R5RS)
» Chapter 11, Input and Output, PLT MzScheme: Language

Manual

21-October-2002 cse413-10-IO © 2002 University of Washington 3

Input / Output

• Typically, I/O is highly implementation and
system dependent with lots of side-effects
» information about the underlying file system

leaks out into the code, which makes it less
portable and less elegant

• However, writing programs that produce
useful results usually means some sort of
connection to the outside world
» open, read, write, close - everybody does it ...

21-October-2002 cse413-10-IO © 2002 University of Washington 4

Ports
• Scheme input / output procedures let you read

from an input port or write to an output port
» an input port is a Scheme object that can deliver

characters upon command
» an output port is a Scheme object that can accept

characters
• Ports are an abstraction

» not necessarily a physical device
• Ports can be associated with

» the console, files, strings (MzScheme)

21-October-2002 cse413-10-IO © 2002 University of Washington 5

Ports
• An input port is associated with a data source

by opening the source
» (open-input-file filename)

» (open-input-string string-identifier)

• An output port is associated with a data sink
by opening the sink
» (open-output-file filename)

» (open-output-string)

• All these procedures return a port identifier
which can then be passed to the I/O procedures

21-October-2002 cse413-10-IO © 2002 University of Washington 6

Reading
• There are standard readers for

» characters
» s-expressions (complete Scheme expressions)

• Readers
» take an optional input port argument
» return the next character or a complete s-expression
» return an eof object on end-of-file read

(read-char)
(read-char input-port)

(read)
(read input-port)

(eof-object? obj)

21-October-2002 cse413-10-IO © 2002 University of Washington 7

Writing
• There are standard writers for

» characters
» Scheme objects

• Writers
» take an optional output port argument
» display generates text intended for human readers
» write generates text intended for machine readers

(write obj)
(write obj output-port)

(write-char char)
(write-char char output-port)

(display obj)
(display obj output-port)

(newline)
(newline output-port)

21-October-2002 cse413-10-IO © 2002 University of Washington 8

Automatic open / close

• You can call procedures and have Scheme do
the file open and close for you

• Scheme opens the file and assigns the result to
the current input port or current output port

(with-input-from-file string proc)

(with-output-to-file string proc)

21-October-2002 cse413-10-IO © 2002 University of Washington 9

File utilities

• These procedures are not part of the Scheme
standard, but are available in most
implementations

• (file-exists? path)
» checks if its argument string names an existing file

• (delete-file path)
» deletes its argument file

21-October-2002 cse413-10-IO © 2002 University of Washington 10

Simple reader and writer procedures
; read items from a port

(define (reader port)
(let ((obj (read port)))
(if (not (eof-object? obj))

(begin
(display "This object was read in: ")
(display " ")
(write obj)
(newline)
(reader port)
))))

; display an item m on a port

(define (writer port m)
(write m port)
(newline port))

reader and writer do not
know anything about the
ports that they are using

io.scm and string-io.scm

21-October-2002 cse413-10-IO © 2002 University of Washington 11

file-evaluator procedure
; read, evaluate, print loop

(define (repl iport oport)

(let ((obj (read iport)))

(if (not (eof-object? obj))

(begin

(write obj oport)

(display " => " oport)

(display (evaluator obj) oport)

(newline oport)

(repl iport oport)

))))

also plot-tree.scm

21-October-2002 cse413-10-IO © 2002 University of Washington 12

Strings
• Strings are sequences of characters
• String literals are written with "double quotes"

» write a quote in a string as \" and backslash as \\
• Strings are not symbols

» a symbol is an object with a unique name
» a string is a sequence of characters

• There are numerous string procedures
(string-append s1 s2 …)
(substring string start end)
(string-length string)
…

