
23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 1

Intro to Java

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 2

Readings and References

• Reading
» Chapters 1 and 2, (Intro to Java, Java Programming

Environment), Core Java Volume 1, by Horstmann and
Cornell

• Other References
» "Object-Oriented Programming Concepts", Java tutorial
» http://java.sun.com/docs/books/tutorial/java/concepts/index.html

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 3

What is Java?

• An object-oriented programming language
» source code

• Application Programming Interfaces (APIs)
» extensive class libraries

• A virtual machine
» runs programs that were written in the source

language and compiled to binary bytecodes

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 4

The Virtual Machine concept

• Hardware abstraction
• Many features of computer hardware: opcodes

that represent fundamental computing tasks,
assembly tools

• The Java VM executes opcodes stored in class
files

• Note that class files could be (and are)
generated by source in other languages

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 5

Java vs. Other Languages
• Java syntax is very much like C syntax
• Java does not explicitly support pointers or any

other direct access to memory
• Java is automatically garbage-collected, so

explicitly de-allocating memory is not necessary
• Java is interpreted. It is difficult (and in fact not

part of the language) to compile to native machine
code

• Java is dynamically linked, with run-time
polymorphism

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 6

Java Environments

• Sun has developed subsets of the Java platform
• Java Enterprise Edition

» servers
• Java Standard Edition

» desktop
• Java Micro Edition

» mobile devices

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 7

Java Application Java Applet

Java Compiler Java Debugger

Other Tools

Java Virtual
Machine

rmi

awt

net

text

util

bean

sql

lang

JRE

Java
Runtime

Environment

JDK

Operating Systems W2K, Solaris, linux, etc.

Java Developers Kit (JDK)

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 8

Tools in the JDK

• javac - Java compiler
• java - Java interpreter
• jdb - Java debugger
• appletviewer - viewer

for Java applets

• javap - Java bytecode
disassembler

• javadoc - Java
documentation
generator

• Documentation for the
JDK can be explored
with your Web browser

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 9

Installing the JDK
• Instructions on the class software page
• JDK

» tools
» library sources

• Java API documentation
• Learning and reference materials

» Java tutorial
http://java.sun.com/docs/books/tutorial/

» take the time to set up one-click shortcuts now

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 10

Our Environment

compiler
javac.exe

class definition
source file: Dog.java

class definition
binary file: Dog.class

java virtual machine (JVM)
java.exe

Development Environment
jEdit, jPad, command line

 text editor
jEdit, jPad, notepad.exe, …

output

you and me

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 11

Compile it

compiler
javac.exe

class definition
source file: Dog.java

class definition
binary file: Dog.class

java virtual machine (JVM)
java.exe

Development Environment
jEdit, jPad, command line

 text editor
jEdit, jPad, notepad.exe, …

output

you and me
The compiler reads our source file
and produces a binary class file.

binary class definition

compile it

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 12

Run it

compiler
javac.exe

class definition
source file: Dog.java

class definition
binary file: Dog.class

java virtual machine (JVM)
java.exe

Development Environment
BlueJ.exe, jEdit, jPad, command line

 text editor
BlueJ, jEdit, notepad.exe, …

output

you and me The virtual machine executes the instructions
in the class definition to produce the output from
our program.

run it

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 13

Objects and Classes

• A class is a definition of a type of thing
» The class definition is where we find a description of how

things of this type behave.

• An object is a particular thing
» There can be many objects of a given class. An object is

an instance of a class.
» All objects of a given class exhibit the same behavior.

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 14

What is a Java class?
• A class is a template or blueprint for building objects
• A class is like a dictionary definition, while objects are

like things in the real world that “are” whatever is
defined

• A class definition generally resides on disk long term
» the original class definition is written in Java (the .java file)

then translated into a more compact form (the .class file) by
the compiler

» the class definition can be used over and over to create more
objects, just like a blueprint can be used over and over to build
more houses

• An object resides in memory and is generally discarded
during or at the end of a program run

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 15

Houses are instances of blueprints

class

objects

http://vcourses.caup.washington.edu:8900/public/CM599/index.html

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 16

Instantiate - create an object

• Once we create a class definition using an editor and the
compiler, we can instantiate it with the “new” operator
» to instantiate means to create objects based on the class

definition
» Oval moon = new Oval(100,100,20,20,Color.gray,true);

• We can then manipulate these objects to do the work that
needs to be done

• Note that many classes have already been defined for us
» There are 2723 classes defined in the standard Java libraries

from Sun - see the JavaAPI documentation

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 17

Class Concepts
• Class definitions have two important

components:
» state
» behavior or interface

• State is expressed using fields in the class
definition

• Behavior is expressed using methods
• Together, fields and methods are called class

members

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 18

Class Concepts: State

• State is a complete description of all the things
that make a class a class.

• For example, part of the state of class
Employee is the Employee’s UWNetID
» All objects of class Employee will have a

UWNetID specified.
• State is stored in data members

» also known as fields, member variables, instance
variables, properties

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 19

Class Concepts: Behavior

• Behavior of a class defines how other classes
may interact with it. It indicates the
capabilities of the class to “do” things.

• For example, a BaseballPlayer class might
define such behavior as hit, pitch, stealBase,
etc.

• Behavior is defined in methods
» Methods look like functions in C, methods in C++,

subroutines in Fortran, etc

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 20

Structure of Source File

• Source file must have same name as name of
public class it contains

• Simple structure in order
» package definition (Optional)
» package and/or class import statements (Optional)
» Class definition (multiple are allowed but can be

messy)

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 21

Structure of Source File

Three components to a Java
source file, in order

package package.name;

import java.io.*;
import java.util.ArrayList;

public class MyClass {

// members go here

}

Package identifier

import statements

Class definition

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 22

Packages

• A way to group related classes
• A key part of Java’s encapsulation mechanism
• Class is permanently associated with its package
• Period (.) separated name mirrors directory

structure where classes are stored
• “Default” package is the current directory
• Classes without a package identifier are in the

default package

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 23

import - help the compiler find classes
• A class’ full name includes its package.

» java.util.ArrayList or java.io.FileReader

• Usually it is more convenient simply to use the
class name without the package

• The import statement allows this shortcutting
• Classes can be imported individually, or all classes

in a package can be imported
• java.lang.* is imported automatically by the

compiler
• is not like #include in C/C++

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 24

Example class
public class Dog {

public Dog(double rate) {

consumptionRate = rate;

weight = 20;

}

public void bark() { ... }

public double getRate() { ... }

public void eat(double pounds) { ... }

private double consumptionRate;

private double weight;

}

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 25

Basic Libraries Sample Members

• java.lang - Object class, numbers, strings,
System, Exceptions, Threads and more

• java.io - streams, readers, writer, files
• java.util - Dates, Locales, data structures, zip
• java.net - Sockets, URLs, datagrams,

InetAddresses, connections
• java.awt, javax.swing - Graphics, Layout,

Event, User Interaction

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 26

Documenting Source Code

• // - single line comment
• /* multiple line comment */
• /** javadoc style comment */
• javadoc utility provides automatic generation

of documention from code comments

23-October-2002 cse413-11-JavaIntro © 2002 University of Washington 27

Javadoc Tags

• The javadoc utility supports several “tag”
fields in javadoc comments
» @param -- passed parameter description
» @return -- returned value description
» @throws -- error indicators

• javadoc formats these and includes them in the
generated documentation

