
30-October-2002 cse413-14-Arrays © 2002 University of Washington 1

Arrays and ArrayLists

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

30-October-2002 cse413-14-Arrays © 2002 University of Washington 2

Readings and References

• Reading
» Chapter 3, Section Arrays, Core Java Volume 1
» Chapter 5, Section Object, Subsection Array Lists , Core

Java Volume 1

• Other References
» "Arrays", Java tutorial
» http://java.sun.com/docs/books/tutorial/java/data/arrays.html

30-October-2002 cse413-14-Arrays © 2002 University of Washington 3

Arrays

• Java (and many other languages) include
arrays as the most basic kind of collection.
» Simple, ordered collections
» Special syntax for declaring values of array type
» Special syntax for accessing elements by position

• Unlike ArrayLists:
» The size is fixed when the array is created
» Can specify the type of the elements of arrays

30-October-2002 cse413-14-Arrays © 2002 University of Washington 4

Array Example
public class ArraySample {

public ArraySample() {

names = new String[3];

names[0] = "Sally";

names[1] = "Splat";

names[2] = "Google";

for (int i=0; i<names.length; i++) {

System.out.println("Name "+i+" is "+names[i]);

}

}

String[] names;

}

30-October-2002 cse413-14-Arrays © 2002 University of Washington 5

Array Example
ArrayExample

names

String[]

index 0

index 1

index 2

String
"Sally"

String
"Splat"

String
"Google"

length : 3

30-October-2002 cse413-14-Arrays © 2002 University of Washington 6

Java Array Object

• Arrays are objects! They...
» Must be instantiated with new unless immediately

initialized
» Can contain Object references or primitive types

» Have class members (length, clone(),…)
» Have zero-based indexes
» Throw an exception if bounds are exceeded

30-October-2002 cse413-14-Arrays © 2002 University of Washington 7

Array Declaration and Creation

• Array have special type and syntax:
<element type>[] <array name> = new <element type> [<length>];

• Arrays can only hold elements of the specified type.
» Unlike ArrayList, element type can be int, double, etc.
» type can be Object, in which case very similar to ArrayList

• <length> is any positive integer expression
• Elements of newly created arrays are initialized

» but generally you should provide explicit initialization

• Arrays have an instance variable that stores the length
<array name>.length

30-October-2002 cse413-14-Arrays © 2002 University of Washington 8

Declaring and Allocating Arrays

• Declare an Array of ten String references
String[] myArray = new String[10];

• Declare an array and initialize elements
» the compiler counts the number of elements in this case
String[] myArray = { “Java”,”is”,”cool”};

• Declare, initialize, and use an array
» this is an "anonymous" array
boolean okay = doLimitCheck(x,new int[] {1,100});

30-October-2002 cse413-14-Arrays © 2002 University of Washington 9

Array Element Access

• Access an array element using the array name
and position: <array name> [<position>]

• Details:
» <position> is an integer expression.
» Positions count from zero
» Type of result is the element type of the array

• Can update an array element by assigning to it:
<array name> [<position>] = <new element value> ;

30-October-2002 cse413-14-Arrays © 2002 University of Washington 10

Looping Over Array Contents

• The length attribute makes looping over
Array objects easy:

for (index=0; index<myArray.length; index++) {
System.out.println(myArray[index]);

}

• The length attribute is a read-only value
» You can't change the size of the array after it

has been created

30-October-2002 cse413-14-Arrays © 2002 University of Washington 11

Passing Array Objects to Methods

• You must declare that a method parameter is an
Array:
public static void main(String[] args)

• Arrays are objects and so you are passing a
reference when you call a method with an array
» This means array contents can be changed by methods
» This may be what you want, but if not, you need to

make sure that other methods only get a copy of your
array and the elements in it

30-October-2002 cse413-14-Arrays © 2002 University of Washington 12

Array Summary

• Arrays are the fundamental low-level collection
type built in to the Java language.
» Also found in essentially all programming languages

• Size fixed when created
• Indexed access to elements
• Used to implement higher-level, richer container

types
» ArrayList for example
» More convenient, less error-prone for users

30-October-2002 cse413-14-Arrays © 2002 University of Washington 13

The Arrays Class

• There is also a class called java.util.Arrays
» Note the capital A, this is a class name
» part of package java.util
» utility functions for using arrays

search
sort
initialize

» These are static methods so they exist and can be
used without creating an object first

30-October-2002 cse413-14-Arrays © 2002 University of Washington 14

An Ordered Collection: ArrayList

• ArrayList is a Java class that specializes in
representing an ordered collection of things

• The ArrayList class is defined in the Java libraries
» part of the java.util package

• We can store any kind of object in an ArrayList
» myList.add(theDog);

• We can retrieve an object from the ArrayList by
specifying its index number
» myList.get(0)

30-October-2002 cse413-14-Arrays © 2002 University of Washington 15

ArrayList
• ArrayList()

» This constructor builds an empty list with an initial
capacity of 10

• int size()

» This method returns the number of elements in this list
• boolean add(Object o)

» This method appends the specified element to the end of
this list and increases the size of the array if needed

• Object get(int index)

» This method returns the element at the specified position

30-October-2002 cse413-14-Arrays © 2002 University of Washington 16

Using ArrayLists

• ArrayList is part of the java.util package
» import java.util.*; to use ArrayList

• Creating a list
ArrayList names = new ArrayList ();

• Getting the size
int numberOfNames = names.size();

• Adding things
names.add("Billy");
names.add("Susan");

names.add("Frodo");

NameList.java

30-October-2002 cse413-14-Arrays © 2002 University of Washington 17

Using ArrayLists : import

• ArrayList is part of the java.util package
» import java.util.ArrayList; to use ArrayList

• The import statement tells the Java compiler
where to look when it can’t find a class
definition in the local directory
» We tell the compiler to look in package java.util

for the definition of ArrayList by putting an
import statement at the top of the source code file

» Java always looks in package java.lang on its own

30-October-2002 cse413-14-Arrays © 2002 University of Washington 18

Using ArrayLists : constructor

• Creating a new ArrayList object

ArrayList names = new ArrayList ();

• There are several constructors available
» ArrayList()

Construct an empty list with an initial capacity of 10
» ArrayList(int initialCapacity)

Construct an empty list with the specified initial capacity
» ArrayList(Collection c)

Construct a list containing elements from another collection

30-October-2002 cse413-14-Arrays © 2002 University of Washington 19

Using ArrayLists : size

• Getting the size

int numberOfNames = names.size();

• size() method returns integer value that caller
can use to control looping, check for limits, etc
» Design pattern: The object keeps track of relevant

information, and can tell the caller when there is a
need to know

30-October-2002 cse413-14-Arrays © 2002 University of Washington 20

Using ArrayLists : add

• Adding things

names.add("Billy");

• add(Object o) method adds an object to the list
at the end of the list

• The object can be of any class type
» String, File, InputStream, …
» can’t add “primitive” types like int or double directly

Can use the wrapper classes like Integer to store primitives

30-October-2002 cse413-14-Arrays © 2002 University of Washington 21

Using ArrayLists: get

• ArrayLists provide indexed access
» We can ask for the ith item of the list, where the

first item is at index 0, the second at index 1, and
the last item is at index n-1 (where n is the size of
the collection).

ArrayList names = new ArrayList ();
names.add("Billy");
names.add("Susan");
Object x = names.get(0);
Object y = names.get(1);

30-October-2002 cse413-14-Arrays © 2002 University of Washington 22

A Problem
• We want to get things out of an ArrayList
• We might write the following:

public void printFirstNameString(ArrayList names) {

String name = names.get(0);

System.out.println("The first name is " + name);

}

• But the compiler complains at the green line:
» incompatible types:
» found : java.lang.Object
» required: java.lang.String

30-October-2002 cse413-14-Arrays © 2002 University of Washington 23

Recall: Casting
• The pattern is

» (<class-name>)<expression>
• For example

String name = (String)names.get(0);

• Casting an object does not change the type of
the object

• A cast is a promise by the programmer that the
object can be used to represent something of
the stated type and nothing will go wrong

30-October-2002 cse413-14-Arrays © 2002 University of Washington 24

Miscasting
• We can lie about casting, but it will be caught

at runtime

public void printFileList() {

for (int i=0; i<names.size(); i++) {

File f = (File)names.get(i);
System.out.println(f);

}

}

this will fail when you run the program

30-October-2002 cse413-14-Arrays © 2002 University of Washington 25

Reference vs. Primitive Types
• A few Java types are primitive:

int, double, boolean, and a few other numeric types we haven't seen

» Are atomic chunks with no parts (no instance variables)
» Exist without having to be allocated with new
» Cannot be message receivers, but can be arguments of

messages and unary and binary operators

• All others are reference types:
Rectangle, BankAccount, Color, String, etc.

» Instances of the class are created using “new”
» Can have instance variables and methods
» All are special cases of the generic type “Object”

30-October-2002 cse413-14-Arrays © 2002 University of Washington 26

The Collections Class

• There is a class called java.util.Collections
» utility functions for using classes that implement the

Collection interface
» This class consists exclusively of static methods that

operate on or return collections. It contains
polymorphic algorithms that operate on collections,
"wrappers", which return a new collection backed by
a specified collection, and a few other odds and ends.

» These are static methods so they exist and can be
used without creating an object first

30-October-2002 cse413-14-Arrays © 2002 University of Washington 27

Useful methods in Collections class

• static void sort(List list)
» Sorts the specified list into ascending order,

according to the natural ordering of its elements.
» "natural order" is defined when you implement the

interface Comparable
• static void sort(List list, Comparator c)

» Sorts the specified list according to the order induced
by the specified comparator

» Comparator lets you define several different orders

