
13-November-2002 cse413-16-Compilers © 2002 University of Washington 1

Compilers

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

13-November-2002 cse413-16-Compilers © 2002 University of Washington 2

Credits

• Most of the material in the following lectures
is derived from lectures taught by Hal Perkins
for CSE 413 and CSE 582

• He also credits previous classes ...
» Cornell CS 412-3 (Teitelbaum, Perkins)
» Rice CS 412 (Cooper, Kennedy, Torczon)
» UW CSE 401 (Chambers, Ruzzo, et al)
» Many books (particularly Cooper/Torczon; Aho,

Sethi, Ullman [Dragon Book], Appel)

13-November-2002 cse413-16-Compilers © 2002 University of Washington 3

Books

• Engineering a Compiler by Keith Cooper & Linda
Torczon
» Not yet available in bookstores
» Preprints available at Professional Copy & Print, Univ.

Way & 42nd St. (~ $40, tax incl.)
• Compilers: Principles, Techniques, and Tools, by

Aho, Sethi, Ullman
» the “Dragon Book”

• Modern Compiler Implementation in Java, by Appel

13-November-2002 cse413-16-Compilers © 2002 University of Washington 4

Why are we doing this?

• Execute this!
int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {
 nPos++;
}

}

• How?

13-November-2002 cse413-16-Compilers © 2002 University of Washington 5

Interpreters & Compilers

• Interpreter
» A program that reads an source program and

produces the results of executing that program
• Compiler

» A program that translates a program from one
language (the source) to another (the target)

13-November-2002 cse413-16-Compilers © 2002 University of Washington 6

Common Issues

• Compilers and interpreters both must read the
input – a stream of characters – and
“understand” it; analysis

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0
) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

13-November-2002 cse413-16-Compilers © 2002 University of Washington 7

Interpreter

• Interpreter
» Execution engine
» Program execution interleaved with analysis

running = true;
while (running) {
 analyze next statement;
 execute that statement;
}

» May involve repeated analysis of some statements
(loops, functions)

13-November-2002 cse413-16-Compilers © 2002 University of Washington 8

Compiler

• Read and analyze entire program
• Translate to semantically equivalent program in

another language
» Presumably easier to execute or more efficient
» Should “improve” the program in some fashion

• Offline process
» Tradeoff: compile time overhead (preprocessing step) vs

execution performance

13-November-2002 cse413-16-Compilers © 2002 University of Washington 9

Typical Implementations

• Compilers
» FORTRAN, C, C++, Java, C#, COBOL, etc. etc.
» Strong need for optimization, etc.

• Interpreters
» PERL, Python, awk, sed, sh, csh, postscript printer,

Java VM
» Effective if interpreter overhead is low relative to

execution cost of language statements
» Functional languages like Scheme and Smalltalk

where the environment is dynamic
13-November-2002 cse413-16-Compilers © 2002 University of Washington 10

Hybrid approaches
• Well-known example: Java

» Compile Java source to byte codes – Java Virtual Machine
language (.class files)

» Execution
Interpret byte codes directly, or
Compile some or all byte codes to native code

(particularly for execution hot spots)
Just-In-Time compiler (JIT)

• Variation: VS.NET
» Compilers generate MSIL
» All IL compiled to native code before execution

13-November-2002 cse413-16-Compilers © 2002 University of Washington 11

Why Study Compilers? Programmer

• Become a better programmer
» Insight into interaction between languages,

compilers, and hardware
» Understanding of implementation techniques
» What is all that stuff in the debugger anyway?
» Better intuition about what your code does

13-November-2002 cse413-16-Compilers © 2002 University of Washington 12

Why Study Compilers? Designer

• Compiler techniques are everywhere
» Parsing (little languages, interpreters)
» Database engines
» AI: domain-specific languages
» Text processing

Tex/LaTex -> dvi -> Postscript -> pdf

» Hardware: VHDL; model-checking tools
» Mathematics (Mathematica, Matlab)

13-November-2002 cse413-16-Compilers © 2002 University of Washington 13

Why Study Compilers? Theoretician

• Fascinating blend of theory and engineering
» Direct applications of theory to practice

Parsing, scanning, static analysis

» Some very difficult problems (NP-hard or worse)
Resource allocation, “optimization”, etc.
Need to come up with good-enough solutions

13-November-2002 cse413-16-Compilers © 2002 University of Washington 14

Why Study Compilers? Education
• Ideas from many parts of CSE

» AI: Greedy algorithms, heuristic search
» Algorithms: graph algorithms, dynamic programming,

approximation algorithms
» Theory: Grammars DFAs and PDAs, pattern matching,

fixed-point algorithms
» Systems: Allocation & naming, synchronization, locality
» Architecture: pipelines & hierarchy management,

instruction set use
• You might even write a compiler some day!

» You’ll almost certainly write parsers and interpreters if you
haven’t already

13-November-2002 cse413-16-Compilers © 2002 University of Washington 15

Structure of a Compiler

• First approximation
» Front end: analysis

Read source program and understand its structure and
meaning

» Back end: synthesis
Generate equivalent target language program

Source TargetFront End Back End

13-November-2002 cse413-16-Compilers © 2002 University of Washington 16

Implications

• Must recognize legal programs (& complain about
illegal ones)

• Must generate correct code
• Must manage storage of all variables
• Must agree with OS & linker on target format

Source TargetFront End Back End

13-November-2002 cse413-16-Compilers © 2002 University of Washington 17

More Implications

• Need some sort of Intermediate Representation (IR)
• Front end maps source into IR
• Back end maps IR to target machine code

Source TargetFront End Back End

Front End

• Split into two parts
» Scanner: Responsible for converting character

stream to token stream
Also strips out white space, comments

» Parser: Reads token stream; generates IR
• Both of these can be generated automatically

or by hand
» Source language specified by a formal grammar
» Tools read the grammar and generate scanner &

parser (either table-driven or hard coded)

Scanner Parsersource tokens IR

13-November-2002 cse413-16-Compilers © 2002 University of Washington 19

Tokens

• Token stream: Each significant lexical chunk
of the program is represented by a token
» Operators & Punctuation: {}[]!+-=*;: …
» Keywords: if while return goto
» Identifiers: id & actual name
» Constants: kind & value; int, floating-point

character, string, …

13-November-2002 cse413-16-Compilers © 2002 University of Washington 20

Scanner Example

• Input text
// this statement does very little
if (x >= y) y = 42;

• Token Stream

» Note: tokens are atomic items, not character strings

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

13-November-2002 cse413-16-Compilers © 2002 University of Washington 21

Parser Output (IR)

• Many different forms
» (Engineering tradeoffs)

• Common output from a parser is an abstract
syntax tree
» Essential meaning of the program without the

syntactic noise

13-November-2002 cse413-16-Compilers © 2002 University of Washington 22

Parser Example

• Token Stream Input • Abstract Syntax Tree

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

13-November-2002 cse413-16-Compilers © 2002 University of Washington 23

Static Semantic Analysis

• During or (more common) after parsing
» Type checking
» Check for language requirements like “declare

before use”, type compatibility
» Preliminary resource allocation
» Collect other information needed by back end

analysis and code generation

13-November-2002 cse413-16-Compilers © 2002 University of Washington 24

Back End

• Responsibilities
» Translate IR into target machine code
» Should produce fast, compact code
» Should use machine resources effectively

Registers
Instructions
Memory hierarchy

13-November-2002 cse413-16-Compilers © 2002 University of Washington 25

Back End Structure

• Typically split into two major parts with sub
phases
» “Optimization” – code improvements

May well translate parser IR into another IR
We won’t do much with this part of the compiler

» Code generation
Instruction selection & scheduling
Register allocation

13-November-2002 cse413-16-Compilers © 2002 University of Washington 26

The Result

• Input

if (x >= y)
y = 42;

• Output

 mov eax,[ebp+16]
 cmp eax,[ebp-8]
 jl L17
 mov [ebp-8],42
L17:

13-November-2002 cse413-16-Compilers © 2002 University of Washington 27

Some Ancient History

• 1950’s. Existence proof
» FORTRAN I (1954) – competitive with hand-

optimized code
• 1960’s

» New languages: ALGOL, LISP, COBOL
» Formal notations for syntax
» Fundamental implementation techniques

Stack frames, recursive procedures, etc.

13-November-2002 cse413-16-Compilers © 2002 University of Washington 28

Some Later History

• 1970’s
» Syntax: formal methods for producing compiler

front-ends; many theorems
• 1980’s

» New languages (functional; Smalltalk & object-
oriented)

» New architectures (RISC machines, parallel
machines, memory hierarchy issues)

» More attention to back-end issues

13-November-2002 cse413-16-Compilers © 2002 University of Washington 29

Some Recent History

• 1990’s – now
» Compilation techniques appearing in many new

places
Just-in-time compilers (JITs)
Whole program analysis

» Phased compilation – blurring the lines between
“compile time” and “runtime”

» Compiler technology critical to effective use of
new hardware (RISC, Itanium, complex
memories)

• “May you study compilers in interesting
times…”, Cooper & Torczon

