
15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 1

Regular Expressions

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

 © 2002 University of Washington 2

Agenda for Today

• Basic concepts of formal grammars (review)
• Regular expressions
• Lexical specification of programming

languages
• Using finite automata to recognize regular

expressions

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 3

Programming Language Specifications

• Since the 1960s, the syntax of every significant
programming language has been specified by a
formal grammar
» First done in 1959 with BNF (Backus-Naur Form

or Backus-Normal Form) used to specify the
syntax of ALGOL 60

» Borrowed from the linguistics community
(Chomsky?)

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 4

Grammar for a Tiny Language

• program ::= statement | program statement
• statement ::= assignStmt | ifStmt
• assignStmt ::= id = expr ;
• ifStmt ::= if (expr) stmt
• expr ::= id | int | expr + expr
• Id ::= a | b | c | i | j | k | n | x | y | z
• int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 5

Productions
• The rules of a grammar are called productions
• Rules contain

» Nonterminal symbols: grammar variables (program,
statement, id, etc.)

» Terminal symbols: concrete syntax that appears in
programs (a, b, c, 0, 1, if, (, …)

• Meaning of
 nonterminal ::= <sequence of terminals and nonterminals>

In a derivation, an instance of nonterminal can be replaced
by the sequence of terminals and nonterminals on the right
of the production

• Often, there are two or more productions for a single
nonterminal – can use either at different times

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 6

Alternative Notations

• There are several syntax notations for
productions in common use; all mean the same
thing
ifStmt ::= if (expr) stmt
ifStmt if (expr) stmt
<ifStmt> ::= if (<expr>) <stmt>

Example
Derivation

a = 1 ; if (a + 1) b = 2 ;

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmt
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 8

Parsing

• Parsing: reconstruct the derivation (syntactic
structure) of a program

• In principle, a single recognizer could work
directly from the concrete, character-by-
character grammar

• In practice this is never done

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 9

Parsing & Scanning

• In real compilers the recognizer is split into two
phases
» Scanner: translate input characters to tokens

Also, report lexical errors like illegal characters and illegal symbols

» Parser: read token stream and reconstruct the derivation

Scanner Parsersource tokens

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 10

Recall: Characters vs Tokens

• Input text
// this statement does very little
if (x >= y) y = 42;

• Token Stream

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 11

Why Separate the Scanner and Parser?

• Simplicity & Separation of Concerns
» Scanner hides details from parser (comments,

whitespace, input files, etc.)
» Parser is easier to build; has simpler input stream

• Efficiency
» Scanner can use simpler, faster design

(But still often consumes a surprising amount of the
compiler’s total execution time)

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 12

Tokens

• Idea: we want a distinct token kind (lexical
class) for each distinct terminal symbol in the
programming language
» Examine the grammar to find these

• Some tokens may have attributes
» Examples: integer constant token will have the

actual integer value (17, 42) as an attribute;
identifiers will have a string with the actual id as
an attribute

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 13

Typical Programming Language Tokens
• Operators & Punctuation

» + - * / () { } [] ; : < <= == = != ! …

» Each of these is a distinct lexical class
• Keywords (reserved)

» if while for goto return switch void …
» Each of these is also a distinct lexical class (not a string)

• Identifiers
» A single ID lexical class, but parameterized by actual id

• Integer constants
» A single INT lexical class, but parameterized by int value

• Other constants, etc.
15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 14

Principle of Longest Match

• In most languages, the scanner should pick the
longest possible string to make up the next token if
there is a choice

• Example
return foobar != hohum;

should be recognized as 5 tokens

not more (i.e., not parts of words or identifiers, or ! and =
as separate tokens)

RETURN ID(foobar) NEQ ID(hohum) SCOLON

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 15

Languages & Automata Theory
• Alphabet: a finite set of symbols
• String: a finite, possibly empty sequence of symbols

from an alphabet
• Language: a set, often infinite, of strings
• Finite specifications of (possibly infinite) languages

» Automaton – a recognizer; a machine that accepts all
strings in a language (and rejects all other strings)

» Grammar – a generator; a system for producing all strings
in the language (and no other strings)

• A language may be specified by many different
grammars and automata

• A grammar or automaton specifies only one language
15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 16

Regular Expressions and Finite Automata

• The lexical grammar (structure) of most
programming languages can be specified with
regular expressions
» (Sometimes a little cheating is needed)

• Tokens can be recognized by a deterministic
finite automaton
» Can be either table-driven or built by hand based

on lexical grammar

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 17

Regular Expressions

• Defined over some alphabet Σ
» For programming languages, commonly ASCII or

Unicode
• If re is a regular expression, L(re) is the

language (set of strings) generated by re

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 18

Fundamental Regular Expressions

∅ Empty language{ }

Empty string{ ε }ε

Singleton set, for each a in Σ{ a }a

NotesL(re)re

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 19

Operations on REs

• Precedence: * (highest), concatenation, | (lowest)
• Parentheses can be used to group REs as needed

0 or more occurrences (Kleene
closure)

L(r)*r*

Combination (union)L(r)∪L(s)r|s

ConcatenationL(r)L(s)rs

NotesL(re)re

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 20

Abbreviations

• The basic operations generate all possible regular expressions,
but there are common abbreviations used for convenience.
Typical examples:

1 of the given characters(a|b|x|y|z)[abxyz]

1 character in given range(a|b|…|z)[a-z]

0 or 1 occurrence(r | ε)r?

1 or more occurrences(rr*)r+

NotesMeaningAbbr.

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 21

Examples

7 character sequencehogwash
2 character sequence<=
2 character sequence!=
single = character=
single ! character!
single + character+
L(re)re

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 22

More Examples

[abc]+

[a-zA-Z][a-zA-Z0-9_]*

[1-9][0-9]*

[0-9]+

[abc]*

L(re)re

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 23

Abbreviations

• Many systems allow abbreviations to make
writing and reading definitions easier

name ::= re

» Restriction: abbreviations may not be circular
(recursive) either directly or indirectly

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 24

Example

• Possible syntax for numeric constants

digit ::= [0-9]
digits ::= digit+
number ::= digits (. digits)?

 ([eE] (+ | -)? digits) ?

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 25

Recognizing Regular Expressions

• Finite automata can be used to recognize
strings generated by regular expressions

• Can build by hand or automatically
» Not totally straightforward, but can be done

systematically
» Tools like Lex, Flex, and JLex do this

automatically, given a set of REs

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 26

Finite State Automaton
• A finite set of states

» One marked as initial state
» One or more marked as final states

• A set of transitions from state to state
» Each labeled with symbol from Σ, or ε

• Operate by reading input symbols (usually characters)
» Transition can be taken if labeled with current symbol
» ε-transition can be taken at any time

• Accept when final state reached & no more input
» Scanner slightly different – accept longest match even if

more input
• Reject if no transition possible or no more input and

not in final state (DFA)

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 27

Example: FSA for “cat”

a tc

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 28

DFA vs NFA

• Deterministic Finite Automata (DFA)
» No choice of which transition to take under any condition

• Non-deterministic Finite Automata (NFA)
» Choice of transition in at least one case
» Accept if some way to reach final state on given input
» Reject if no possible way to final state

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 29

Finite Automata in Scanners

• Want DFA for speed (no backtracking)
• Conversion from regular expressions to NFA

is easy
• There is a well-defined procedure for

converting a NFA to an equivalent DFA

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 30

From RE to NFA: base cases

a

ε

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 31

rs

r sε

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 32

r | s

r

sε ε

ε ε

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 33

r *

r

ε

ε ε

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 34

From NFA to DFA
• Subset construction

» Construct a DFA from the NFA, where each DFA state
represents a set of NFA states

• Key idea
» The state of the DFA after reading some input is the set of

all states the NFA could have reached after reading the
same input

• If NFA has n states, DFA has at most 2n states
» => DFA is finite, can construct in finite # steps

• Resulting DFA may have more states than needed
» See the books for construction and minimization details

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 35

Simple DFA example

• Idea: show a hand-written DFA for some typical
programming language constructs
» Can use to construct hand-written scanner

• Setting: Scanner is called whenever the parser needs a
new token
» Scanner stores current position in input
» Starting there, use a DFA to recognize the longest possible

input sequence that makes up a token and return that token

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 36

Scanner DFA Example (1)

0

Accept LPAREN(2

Accept RPAREN) 3

whitespace
or comments

Accept SCOLON; 4

Accept EOFend of input 1

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 37

Scanner DFA Example (2)

Accept NEQ! 6

Accept NOT7

5 =

other

Accept LEQ< 9

Accept LESS10

8 =

other

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 38

Scanner DFA Example (3)

[0-9]

Accept INT12

11

other

[0-9]

15-November-2002 cse413-17-RegularExpressions © 2002 University of Washington 39

• Strategies for handling identifiers vs keywords
» Hand-written scanner: look up identifier-like things in

table of keywords to classify (good application of perfect
hashing)

» Machine-generated scanner: generate DFA will appropriate
transitions to recognize keywords
Lots ’o states, but efficient (no extra lookup step)

Scanner DFA Example (4)

[a-zA-Z]

Accept ID or keyword14

13

other

[a-zA-Z0-9_]

