
18-November-2002 cse413-18-JavaIO © 2002 University of Washington 1

Java Input / Output

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 2

Readings and References

• Reading
» Chapter 12, Sections: Streams, The Complete Stream Zoo,

Putting Streams to Use, File Management, CoreJava,
Volume 1, Fundamentals, by Horstmann and Cornell

• Other References
» Section "I/O" of the Java tutorial
» http://java.sun.com/docs/books/tutorial/essential/io/index.html

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 3

Input & Output

• Program input can come from a variety of
places:
» the mouse, keyboard, disk, network…

• Program output can go to a variety of places:
» the screen, speakers, disk, network, printer…

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 4

"Streams" are the basic I/O objects

keyboard,
disk file,
network,
etc

display,
disk file,
network,
etc

from Sun tutorial on I/O

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 5

The stream model

• The stream model views all data as coming
from a source and going to a sink

Source SinkStream

• Sources and sinks can be files, memory, the
console, network ports, serial ports, etc

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 6

Streams

• Getting data from source to sink is the job of
an object of a stream class

• Use different streams for doing different jobs
• Streams appear in many packages

» java.io - basic stream functionality, files
» java.net - network sockets
» javax.comm - serial ports
» java.util.zip - zip files

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 7

Streams are layered classes

• Inheritance and composition both play key
roles in defining the various types of streams

• Each layer adds a little bit of functionality
• The nice thing about this design is that many

programs don't need to know exactly what
kind of stream they are working with
» one OutputStream is as good as another in many

situations, as long as it knows how to move bytes

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 8

OutputStream

• An OutputStream sends bytes to a sink
» OutputStream is an abstract class
» the actual "write" method depends on the device

being written to
• Key methods:

abstract void write(int b) throws IOException

void write(byte[] b) throws IOException

void close() throws IOException

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 9

OutputStream subclasses

• Subclasses differ in how they implement write()
and in what kind of sink they deal with:
» FileOutputStream: sink is a file on disk
» ByteArrayOutputStream: sink is an array of bytes
» PipedOutputStream: sink is a pipe to another thread

• Other subclasses process output streams
» FilterOutputStream: process the stream in transit
» ObjectOutputStream: primitives and objects to a sink

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 10

FilterOutputStream
• Constructor takes an instance of OutputStream
• Resulting object is also instance of OutputStream
• These classes decorate the basic OutputStream

implementations with extra functionality
• Subclasses of FilterOutputStream in java.io:

» BufferedOutputStream: adds buffering for efficiency
» PrintStream: supports display of data in text form (using the

default encoding only)
» DataOutputStream: write primitive data types and Strings

(in binary form)

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 11

InputStream
• An InputStream gets bytes from a source

» InputStream is an abstract class
» The actual "read" method depends on the source

being read from
» Key methods:

abstract int read() throws IOException

int read(byte[] b) throws IOException

void close() throws IOException

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 12

InputStream subclasses

• Subclasses differ in how they implement read()
and in what kind of source they deal with:
» FileInputStream: source is a file on disk
» ByteArrayInputStream: source is an array of byte
» PipedInputStream: source is pipe from another thread

• Other subclasses process input streams
» FilterInputStream: process the stream in transit
» ObjectInputStream: primitives and objects from a

source

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 13

FilterInputStream

• Constructor takes an instance of InputStream
• Resulting object is also instance of InputStream
• These classes “decorate” the basic InputStream

implementations with extra functionality
• Some useful subclasses

» BufferedInputStream: adds buffering for efficiency
» ZipInputStream: read zip files
» DataInputStream: read primitive data types and Strings (in

binary form)

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 14

Reader and Writer
• Reader and Writer are abstract classes that are

Unicode aware and can use a specified encoding
to translate Unicode to/from bytes

• Subclasses implement most of the functionality
» InputStreamReader, OutputStreamWriter

rely on the underlying streams to actually move bytes

» BufferedReader, BufferedWriter
add buffering for efficiency

» StringReader, StringWriter
» PipedReader, PipedWriter

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 15

Reader and Writer guidelines

• In general:
» If you’re working with text (Strings and chars),

use Readers and Writers
» If you’re working with primitive data types, use

InputStreams and OutputStreams
» If you get an InputStream or OutputStream from

somewhere else, you can convert it to a Reader or
a Writer as needed by wrapping it with an
InputStreamReader or OutputStreamWriter

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 16

System.in, System.out

• System.in is a predefined InputStream
• You can convert to a BufferedReader like this:

• System.out is a predefined OutputStream
» actually, it's a PrintStream

• You can convert to a PrintWriter like this:

BufferedReader r =
new BufferedReader(new InputStreamReader(System.in));

PrintWriter w =
new PrintWriter(new OutputStreamWriter(System.out),true);

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 17

Read a String from the console

/* ask for the names we were not given */

BufferedReader console =
new BufferedReader(new InputStreamReader(System.in));

for (int i=count; i<3; i++) {
System.out.print("name "+i+"? ");
String petName = console.readLine();
if (petName == null) {

petName = "<blank>";
}
names.add(petName);

}

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 18

Sources and Sinks - Console

• When reading from the console
» the keyboard is the source
» a data structure in your application is the sink

• When writing to the console
» a data structure in your application is the source
» the monitor (terminal window) is the sink

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 19

Sources and Sinks - Files

• When reading from a file
» the file is the source
» a data structure in your application is the sink

• When writing to a file
» a data structure in your application is the source
» the file is the sink

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 20

The stream model applied to files

• The source can be a file on disk
» in this case, the sink is some variable in your program

sample.txt a String
variable

read using an InputStream

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 21

FileInputStream and FileOutputStream
• The file streams read or write from a file on the

native file system
» FileInputStream

retrieve bytes from a file and provide them to the program

» FileOutputStream
send bytes to a file from your program

• If used by themselves, FileInputStream and
FileOutputStream are for binary I/O
» just plain bytes in and out with no interpretation as

characters or anything else

FileInputStream methods
int available()

Returns the number of bytes that can be read from this file input stream without
blocking.

void close()
Closes this file input stream and releases any system resources associated with
the stream.

protected void finalize()
Ensures that the close method of this file input stream is called when there are
no more references to it.

FileDescriptor getFD()
Returns the FileDescriptor object that represents the connection to the actual
file in the file system being used by this FileInputStream.

int read()
Reads a byte of data from this input stream.

int read(byte[] b)
Reads up to b.length bytes of data from this input stream into an array of bytes.

int read(byte[] b, int off, int len)
Reads up to len bytes of data from this input stream into an array of bytes.

long skip(long n)
Skips over and discards n bytes of data from the input stream.

void mark(int readlimit)
Marks the current position in this input stream.

boolean markSupported()
Tests if this input stream supports the mark and reset methods.

void reset()
Repositions this stream to the position at the time the mark method was last
called on this input stream.

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 23

"bytes from a file" and "bytes as text"

• Create new FileInputStream and connect it to a
specific file

• "decorate" the stream with an InputStreamReader
that will do Unicode translation for you

FileInputStream(String name)
Create a FileInputStream by opening a connection to an actual file, the
file named by the path name in the file system.

InputStreamReader(InputStream in)
Create an InputStreamReader that uses the default character encoding.

InputStreamReader(InputStream in, String enc)
Create an InputStreamReader that uses the named character encoding.

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 24

"bytes from a file as text"

• Create new FileReader and connect it to a file
» FileReader is a convenience class for reading character

files. The constructors of this class assume that the
default character encoding and the default byte-buffer
size are appropriate. To specify these values yourself,
construct an InputStreamReader on a FileInputStream.
FileReader(File file)

Creates a new FileReader, given the File to read from.

FileReader(FileDescriptor fd)
Creates a new FileReader, given the FileDescriptor to read from.

FileReader(String fileName)
Creates a new FileReader, given the name of the file to read from.

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 25

prepare to read a file

public TextRead(String fn) throws IOException {
InputStream in;
in = new FileInputStream(fn);
textReader = new BufferedReader(new InputStreamReader(in));

}

open an InputStream connected to the filename provided

add buffering capability so that we
can read an entire line at once

make it a Reader so that we
get valid Unicode characters

1

2
3

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 26

BufferedReader constructor from Sun

/**
* Create a buffering character-input stream that uses an input buffer of
* the specified size.
*
* @param in A Reader
* @param sz Input-buffer size
* @exception IllegalArgumentException If sz is <= 0
*/
public BufferedReader(Reader in, int sz) {

super(in);
if (sz <= 0)

throw new IllegalArgumentException("Buffer size <= 0");
this.in = in;
cb = new char[sz];
nextChar = nChars = 0;

} the buffer is allocated here as
an array of characters

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 27

readline()

• Read one line from a BufferedReader
» returns a String containing the contents of the line,

not including any line-termination characters, or
null if the end of the stream has been reached

/**
* Read one line from the text file and return it as a String to the caller.
* Note that the line might be null (at end of file), empty (0 characters) or
* blank (all whitespace). Of course, it might also be a non-blank String with
* some useful characters in it.
* @return a String containing the next line or null if
* we are at the end of the file
*/
private String getNextLine() throws IOException {

return textReader.readLine();
}

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 28

Detecting end of file

• End of file is expected when using readline()
» you will eventually read all the characters in a file

• So the method returns null if we are end of
file
» you must check for null after every readline() call

String myLine = tr.getNextLine();
while (myLine != null) {

System.out.println(">> "+myLine);
myLine = tr.getNextLine();

}

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 29

close when done

• After reading through the file, you should
close the stream, since an open file takes up
system resources and prevents other programs
from using the file

/**
* Close the stream.
*/
public void close() throws IOException {

textReader.close();
}

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 30

"bytes to a file as text"
• Create new PrintWriter and connect it to a file

using a FileWriter
» PrintWriter provides the text formatting capabilities
» FileWriter provides the connection between the

PrintWriter and the actual file
» FileWriter is a convenience class like FileReader

could use OutputStreamWriter with a FileOutputStream
PrintWriter(Writer out)

Create a new PrintWriter, without automatic line flushing.

FileWriter(String fileName)
Constructs a FileWriter object given a file name.

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 31

prepare to write a file

public TextRW(String fn) throws IOException {
File sink = new File(fn);
sink.createNewFile();
System.out.println("Created "+sink.getAbsolutePath());
textWriter = new PrintWriter(new BufferedWriter(new FileWriter(sink)));

}

create a new file with the name given to us for writing

add formatting so that
Java can convert values
to character strings for us

open the file as a
Writer so Unicode
works correctly

1

24

add buffering for
efficiency

3

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 32

println(...)

• Print formatted representations of objects and
primitive type to a text-output stream
» does not contain methods for writing raw bytes,

for which a program should use unencoded byte
streams

/**
* Write one line on the output file.
* @param line the line of text to write out
*/
public void writeOneLine(String s) {

textWriter.println(s);
}

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 33

close when done

• After writing the file, you should close the stream
» the last data that you have written may not actually

have gotten all the way out to the disk - closing
makes sure that the data is flushed to disk

» an open file takes up system resources and prevents
other programs from using the file

/**
* Close the stream.
*/
public void close() throws IOException {

textWriter.close();
}

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 34

The File class
• Manages an entry in a directory (a pathname)
• Several constructors are available

» File(String pathname)
pathname string

» File(String parent, String child)
parent pathname string and a child pathname string.

» File(File parent, String child)
parent abstract pathname and a child pathname string.

• The File() constructors create a pathname
object in memory, NOT a new file on disk

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 35

File class examples
File f = new File(“c:\autoexec.bat”);

File app = new File(“c:\apps\JPadPro”,“JPadPro.exe”);

File jppDir = new File(“c:\apps\JPadPro”);

File jppApp = new File(jppDir, “JPadPro.exe”);

• Creating a new File object just creates a tool for
managing files, it does not create a new file on disk!
» Creating a new Dog object did not create a new dog

running around the room ...

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 36

File class methods

• Create, rename, delete a file
» createNewFile(), createTempFile(), renameTo(), delete()

• Determine whether a file exists and access limitations
» exists(), canRead(), canWrite()

• Get file info
» getParent(), getCanonicalPath(), length(), lastModified()

• Create and get directory info
» mkdirs(), list(), listFiles(), getParent()

• Etc, etc

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 37

Appendix

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 38

Writing output to the console

• Java provides standard PrintStream System.out
» has methods to print text to the console window

• Some operations:
System.out.println(<expression>);
System.out.print(<expression>);

• expression can be
» primitive type: an int, double, char, boolean
» or an object of any class type

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 39

Printing primitives on System.out

• System.out is a PrintStream object
• PrintStream defines a whole bunch of print(…)

methods, one for each type
void print(boolean b)
void print(char c)
void print(char[] s)
void print(double d)
void print(float f)
void print(int i)
void print(long l)

void print(Object obj)
void print(String s)

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 40

Printing objects on System.out

• Any object can be printed on System.out
Rectangle rect = new

Rectangle(30,50,100,150,Color.blue,true);
System.out.println(rect);

• Can be very useful for debugging
» Put System.out.print or println method calls in

your code to display a message when that place is
reached during execution

» Particularly useful if the string version of the
object has useful information in a readable format

18-November-2002 cse413-18-JavaIO © 2002 University of Washington 41

Object Representation on System.out

• What actually happens when an object is printed?
» The toString() method belonging to the object

provides the string to be printed
» All classes have a default toString(), the one defined

by the Object class (not very descriptive)

» But you can provide a custom version of toString() in
any of your classes very easily

public String toString() {
return getClass().getName()+"@"+Integer.toHexString(hashCode());
}

