

CSE 413, Autumn 2002 Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

Recall: Programming Language Specs

- Syntax of every significant programming language is specified by a formal grammar
 » BNF or some variation there on
- As language engineering has developed, formal methods have improved for defining useful grammars and tools for processing them

Productions

- The rules of a grammar are called *productions*
- Rules contain
 - » Nonterminal symbols: grammar variables (*program, statement, id,* etc.)
 - » Terminal symbols: concrete syntax that appears in programs: a, b, c, 0, 1, if, (, ...
- Meaning of

nonterminal ::= <sequence of terminals and nonterminals>

In a derivation, an instance of *nonterminal* can be replaced by the sequence of terminals and nonterminals on the right of the production

• Often, there are two or more productions for a single nonterminal – can use either at different times

Grammar for D, a little language

```
program ::= function-def | program function-def
function-def ::= int id () { statements }
     int id ( parameters ) { statements }
     int id () { declarations statements }
     int id ( parameters ) { declarations statements }
parameters ::= parameter | parameters , parameter
parameter ::= int id
declarations ::= declaration | declarations declaration
declaration ::= int id ;
statements ::= statement | statements statement
statement ::= id = exp ; | return exp ; | { statements }
     if (bool-exp) statement | if (bool-exp) statement else statement
     while (bool-exp) statement
bool-exp ::= rel-exp | ! (rel-exp)
rel-exp ::= exp == exp | exp > exp
exp ::= term | exp + term | exp - term
term ::= factor | term * factor
factor ::= id | int | (exp) | id () | id (exps)
exps ::= exp | exps, exp
```

Grammar for Java, a big language

- The Java[™] Language Specification, *Second Edition*
 - » Entire document
 - 500 + pages

Grammar productions with explanatory text

- » Chapter 18, Syntax
 - 8 pages of grammar productions, presented in "BNF-style"

Parsing

- Parsing: reconstruct the derivation (syntactic structure) of a program
- In principle, a single recognizer could work directly from the concrete, character-by-character grammar
 - » In practice this is never done

Parsing & Scanning

- In real compilers the recognizer is split into two phases
 - » Scanner: translate input characters to tokens Also, report lexical errors like illegal characters and illegal symbols
 - » Parser: read token stream and reconstruct the derivation

Parsing

- The syntax of most programming languages can be specified by a *context-free grammar* (CFG)
- Parsing
 - » Given a grammar G and a sentence w in L(G), traverse the derivation (parse tree) for w in some *standard order* and do *something useful* at each node
 - » The tree might not be produced explicitly, but the control flow of a parser corresponds to a traversal

"Standard Order"

- For practical reasons we want the parser to be *deterministic* (no backtracking), and we want to examine the source program from *left to right*.
 - » parse the program in linear time in the order it appears in the source file

Common Orderings

- Top-down
 - » Start with the root
 - » Traverse the parse tree depth-first, left-to-right (leftmost derivation)
 - » LL(k)
- Bottom-up
 - Start at leaves and build up to the root
 Effectively a rightmost derivation in reverse
 - » LR(k) and subsets (LALR(k), SLR(k), etc.)

"Something Useful"

- At each point (node) in the traversal, perform some *semantic action*
 - » Construct nodes of full parse tree (rare)
 - » Construct abstract syntax tree (common)
 - » Construct linear, lower-level representation (more common in later parts of a modern compiler)
 - » Generate target code on the fly (1-pass compiler; not common in production compilers – can't generate very good code in one pass)

Context-Free Grammars

- Formally, a grammar *G* is a tuple <*N*,Σ,*P*,*S*> where
 - » N a finite set of non-terminal symbols
 - » Σ a finite set of terminal symbols
 - » *P* a finite set of productions A subset of $N \times (N \cup \Sigma)^*$
 - » S the start symbol, a distinguished element of N
 If not specified otherwise, this is usually assumed to be the non-terminal on the left of the first production

Standard Notations

a, b, c	elements of Σ	terminals
w, x, y, z	elements of Σ^*	strings of terminals
A, B, C	elements of N	non-terminals
X, Y, Z	elements of $N \cup \Sigma$	grammar symbols
α, β, γ	elements of $(N \cup \Sigma)^*$	strings of symbols
$A \rightarrow \alpha \text{ or } A ::= \alpha \text{ if } < A, \alpha > \text{ in } P$		

"non-terminal A can take the form α "

Derivation Relations

- $\alpha \land \gamma \Rightarrow \alpha \land \gamma \Rightarrow \alpha \land \gamma$ iff $A ::= \beta \text{ in } P$ $\Rightarrow "=>"$ is read "derives"
- A =>* w if there is a chain of productions starting with A that generates w
 » transitive closure

Derivation Relations

- w A $\gamma = \sum_{lm} w \beta \gamma$ iff A ::= β in P
 - » derives leftmost
- $\alpha A w \Longrightarrow_{rm} \alpha \beta w$ iff $A ::= \beta in P$ » derives rightmost
- We will only be interested in leftmost and rightmost derivations not random orderings

Languages

- For A in N, $L(A) = \{ w | A = >* w \}$
- If *S* is the start symbol of grammar *G*, define L(G) = L(S)
 - » The language derived by G is the language derived by the start symbol S

Reduced Grammars

• Grammar *G* is *reduced* iff for every production $A ::= \alpha$ in *G* there is a derivation

$$S =>* x A z => x \alpha z =>* xyz$$

- » i.e., no production is useless
- Convention: we will use only reduced grammars

Ambiguity

- Grammar *G* is *unambiguous* iff every *w* in *L*(*G*) has a unique leftmost (or rightmost) derivation
 - » Fact: unique leftmost or unique rightmost implies the other
- A grammar without this property is *ambiguous*
 - » Note that other grammars that generate the same language may be unambiguous
- We need unambiguous grammars for parsing

Ambiguous Grammar for Expressions

$$expr ::= expr + expr | expr - expr$$

| $expr * expr | expr / expr | int$
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

- Show that this is ambiguous
 - » How? Show two different leftmost or rightmost derivations for the same string
 - » Equivalently: show two different parse trees for the same string

Example Derivation

expr ::= expr + expr | expr - expr | expr * expr | expr / expr | int int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Give a leftmost derivation of 2+3*4 and show the parse tree

Another Derivation

expr ::= expr + expr | expr - expr | expr * expr | expr / expr | int int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Give a different leftmost derivation of 2+3*4 and show the parse tree

Another Example

expr ::= expr + expr | expr - expr | expr * expr | expr / expr | int int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Give two different derivations of 5+6+7

What's going on here?

- The grammar has no notion of precedence or associativity
- Solution
 - » Create a non-terminal for each level of precedence
 - » Isolate the corresponding part of the grammar
 - » Force the parser to recognize higher precedence subexpressions first

Classic Expression Grammar

expr ::= expr + term | expr - term | term term ::= term * factor | term / factor | factor factor ::= int | (expr) int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Derive 2 + 3 * 4

expr ::= expr + term | expr - term | termterm ::= term * factor | term / factor | factorfactor ::= int | (expr)int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Derive 5 + 6 + 7

expr ::= expr + term | expr - term | termterm ::= term * factor | term / factor | factorfactor ::= int | (expr)int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Derive 5 + (6 + 7)

expr ::= expr + term | expr - term | term term ::= term * factor | term / factor | factor factor ::= int | (expr) int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Another Classic Example

- Grammar for conditional statements
 ifStmt ::= if (cond) stmt
 | if (cond) stmt else stmt
 - » Exercise: show that this is ambiguous How?

One Derivation

ifStmt ::= if (*cond*) *stmt* | if (*cond*) *stmt* else *stmt*

if (cond) if (cond) stmt else stmt

Another Derivation

ifStmt ::= if (*cond*) *stmt* | if (*cond*) *stmt* else *stmt*

if (cond) if (cond) stmt else stmt

Solving if Ambiguity

- Fix the grammar to separate if statements with else clause and if statements with no else
 - » Done in Java reference grammar
 - » Adds lots of non-terminals
- Use some ad-hoc rule in parser
 - » "else matches closest unpaired if"