Grammar

CSE 413, Autumn 2002

Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

22-November-2002 cse413-19-Grammar © 2002 University of Washington

Recall: Programming Language Specs

* Syntax of every significant programming
language 1s specified by a formal grammar

» BNF or some variation there on
* As language engineering has developed,

formal methods have improved for defining
useful grammars and tools for processing them

22-November-2002 cse413-19-Grammar © 2002 University of Washington 2

Productions

* The rules of a grammar are called productions

e Rules contain

» Nonterminal symbols: grammar variables (program,
Statement, id, etc.)

» Terminal symbols: concrete syntax that appears in
programs: a, b, c, 0, 1, 1f, (, ...
* Meaning of
nonterminal ::= <sequence of terminals and nonterminals>

In a derivation, an instance of nonterminal can be replaced
by the sequence of terminals and nonterminals on the right
of the production

* Often, there are two or more productions for a single
nonterminal — can use either at different times

22-November-2002 cse413-19-Grammar © 2002 University of Washington

Grammar for D, a little language

program ::= function-def | program function-def
function-def ::= int id () { statements }
| int id (parameters) { statements }
| int id () { declarations statements }
| int id (parameters) { declarations statements }
parameters .:= parameter | parameters , parameter
parameter := int id
declarations ::= declaration | declarations declaration
declaration ::= int id ;
Statements ::= statement | statements statement
Statement ;= id = exp ; | return exp ; | { statements }
| 1£ (bool-exp) statement | 1 £ (bool-exp) statement el se statement
| while (bool-exp) statement
bool-exp ::=rel-exp | ! (rel-exp)
rel-exp ::= exp == exp | exp > exp
exp .= term | exp + term | exp - term
term ::= factor | term * factor
factor ::=id |int| (exp)|id () |id (exps)

exps ::=exp | exps , exp

Grammar for Java, a big language

* The Java™ Language Specification, Second
Edition
» Entire document
500+ pages
Grammar productions with explanatory text

» Chapter 18, Syntax
8 pages of grammar productions, presented in "BNF-style"

22-November-2002 cse413-19-Grammar © 2002 University of Washington 5

Parsing

* Parsing: reconstruct the derivation (syntactic
structure) of a program

 In principle, a single recognizer could work
directly from the concrete, character-by-
character grammar

» In practice this 1s never done

22-November-2002 cse413-19-Grammar © 2002 University of Washington

Parsing & Scanning

 Inreal compilers the recognizer 1s split into two
phases

» Scanner: translate input characters to tokens

Also, report lexical errors like illegal characters and illegal symbols

» Parser: read token stream and reconstruct the derivation

%-m’-

22-November-2002 cse413-19-Grammar © 2002 University of Washington

Parsing

* The syntax of most programming languages

can be specified by a context-free grammar
(CFQG)

* Parsing

» Given a grammar G and a sentence w 1n L(G),
traverse the derivation (parse tree) for w in some
standard order and do something useful at each
node

» The tree might not be produced explicitly, but the
control flow of a parser corresponds to a traversal

22-November-2002 cse413-19-Grammar © 2002 University of Washington

program .= statement | program statement
statement ::= assignStmt | ifStmt
Parse Tree assignStmt +:= id = expr ;
G ifStmt 2= if (expr) stmt

expr .= id| int| expr+ expr
Example g:=alblclilykinxlylz
x=0]1]12]|3|4|5]|6]7|8]9
program
program Statement
— \
Stat/ement i]Stm /
. statement
assignStmt .
assignStmt
id expr
|
int
I

“Standard Order”

* For practical reasons we want the parser to be
deterministic (no backtracking), and we want
to examine the source program from left to
right.

» parse the program 1n linear time 1n the order it
appears 1n the source file

22-November-2002 cse413-19-Grammar © 2002 University of Washington 10

Common Orderings

 Top-down
» Start with the root

» Traverse the parse tree depth-first, left-to-right (Ieftmost
derivation)

» LL(k)

e Bottom-up
» Start at leaves and build up to the root

Effectively a rightmost derivation in reverse

» LR(k) and subsets (LALR(k), SLR(k), etc.)

22-November-2002 cse413-19-Grammar © 2002 University of Washington 11

“Something Useful”

e At each point (node) in the traversal, perform some
semantic action

»

»

»

»

Construct nodes of full parse tree (rare)
Construct abstract syntax tree (common)

Construct linear, lower-level representation (more common
in later parts of a modern compiler)

Generate target code on the fly (1-pass compiler; not
common 1n production compilers — can’t generate very
good code 1n one pass)

22-November-2002 cse413-19-Grammar © 2002 University of Washington 12

Context-Free Grammars

* Formally, a grammar G 1s a tuple <N, X, P,5>
where
» N a finite set of non-terminal symbols
» 2 a finite set of terminal symbols

» P a finite set of productions
A subset of N x (N U X)*

» § the start symbol, a distinguished element of N

If not specified otherwise, this 1s usually assumed to be
the non-terminal on the left of the first production

22-November-2002 cse413-19-Grammar © 2002 University of Washington 13

Standard Notations

a, b, c
W, X, Y, Z
A, B, C
X, Y, Z

o, B,y

el

el

e!

lements of X terminals
lements of 2* strings of terminals
ements of ¥ non-terminals
ements of VU X grammar symbols
lements of (N U)* strings of symbols

A—-oorA:=aif<A,a>mP

"non-terminal A can take the form o"

22-November-2002

cse413-19-Grammar © 2002 University of Washington

14

Derivation Relations

c o Ay=0afBy iff Ax:=BinP
» "=>"1s read "derives"

A =>*w 1f there 1s a chain of productions
starting with A that generates w

» transitive closure

22-November-2002 cse413-19-Grammar © 2002 University of Washington

15

Derivation Relations

e wAyY=_wpy iff A:=finP
» derives leftmost

c 0 Aw=_opPw iffA:=PinP
» derives rightmost

 We will only be interested 1n leftmost and
rightmost derivations — not random orderings

22-November-2002 cse413-19-Grammar © 2002 University of Washington 16

Languages

e ForAmN,LLA)={w|A=%w}
e If S 1s the start symbol of grammar G, define
L(G)=L(S)

» The language derived by G 1s the language derived
by the start symbol S

22-November-2002 cse413-19-Grammar © 2002 University of Washington 17

Reduced Grammars

 Grammar G 1s reduced 1ff for every
production A ;= o 1n G there 1s a derivation

S=>*X Az=>X0z=%Xyz
» 1.€., no production 1s useless

* Convention: we will use only reduced
grammars

22-November-2002 cse413-19-Grammar © 2002 University of Washington 18

Ambiguity

 Grammar G 1s unambiguous 1if every w 1n
L(G) has a unique leftmost (or rightmost)
derivation

» Fact: unique leftmost or unique rightmost implies
the other

* A grammar without this property 1s ambiguous

» Note that other grammars that generate the same
language may be unambiguous

* We need unambiguous grammars for parsing

22-November-2002 cse413-19-Grammar © 2002 University of Washington 19

Ambiguous Grammar for Expressions

expr .= expr + expr | expr - expr
| expr * expr | expr / expr | int
int::=0|1|2|3]4|5|6]|7|8|9
» Show that this 1s ambiguous

» How? Show two different leftmost or rightmost
derivations for the same string

» Equivalently: show two different parse trees for
the same string

22-November-2002 cse413-19-Grammar © 2002 University of Washington 20

expr .= expr + expr | expr - expr

Example Derivation | expr * expr | expr/ expr | in

int:=0[1|2(3]4|5/6|7]8]9

Give a leftmost derivation of 2+3*4 and show the parse tree

expr .= expr + expr | expr - expr

AnOther Derivation | expr * expr | expr | expr | int

int:=0[1|2(3]4|5/6|7]8]9

Give a different leftmost derivation of 2+3*4 and show the parse tree

expr .= expr + expr | expr - expr

AnOther Example | expr * expr | expr | expr | int

int:=0[1|2(3]4|5/6|7]8]9

Give two different derivations of 5+6+7

What’s going on here?

* The grammar has no notion of precedence or
assoclativity

e Solution
» Create a non-terminal for each level of precedence
» Isolate the corresponding part of the grammar

» Force the parser to recognize higher precedence
subexpressions first

22-November-2002 cse413-19-Grammar © 2002 University of Washington 24

Classic Expression Grammar

expr .= expr + term | expr — term | term
term ;= term * factor | term / factor | factor
factor ::=int | (expr)
int::=0[1]2|31[4|5]|6]7

22-November-2002 cse413-19-Grammar © 2002 University of Washington

25

expr ;= expr + term | expr — term | term

Derive 2 -+ 3 x 4 term ;= term * factor | term / factor | factor

factor ::=int | (expr)

int:=0]1]2]3]4]5]6]7

expr ;= expr + term | expr — term | term

Derive 5 —|— 6 —|— 7 term ::= term * factor | term / factor | factor

factor ::=int | (expr)
int:=0[1|2|3[4]5]6]7

expr ;= expr + term | expr — term | term

Derive 5 —|— (6 —|— 7) term ::= term * factor | term / factor | factor

factor ::=int | (expr)
int:=0[1|2|3[4]5]6]7

Another Classic Example

 Grammar for conditional statements
ifStmt .= if (cond) stmt
| if (cond) stmt else stmt

» Exercise: show that this 1s ambiguous
How?

22-November-2002 cse413-19-Grammar © 2002 University of Washington

29

ifStmt ::=1f (cond) stmt

One Derlvatlon |if (cond) stmt else stmt

if (cond) if (cond) stmt else stmt

ifStmt ::=1f (cond) stmt

Another Derivation [if (cond) stmt else stmt

if (cond) if (cond) stmt else stmt

Solving if Ambiguity

* Fix the grammar to separate 1f statements with

else clause and 1f statements with no else
» Done 1n Java reference grammar

» Adds lots of non-terminals

* Use some ad-hoc rule 1n parser

» “else matches closest unpaired 1f”

22-November-2002 cse413-19-Grammar © 2002 University of Washington

32

