
27-November-2002 cse413-20-Reflection © 2002 University of Washington 1

Reflection

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

27-November-2002 cse413-20-Reflection © 2002 University of Washington 2

Readings and References

• Reading
» Chapter 5, Inheritance, Section: Reflection ,Core Java

Volume 1, by Horstmann and Cornell

• Other References
» "The Reflection API", Java tutorial
» http://java.sun.com/docs/books/tutorial/reflect/index.html

27-November-2002 cse413-20-Reflection © 2002 University of Washington 3

Classes from another viewpoint

• Ordinarily we deal with specific classes that
perform specific functions that are known at
compile time
» The Scanner class is used to read through a source

line in the D language and return Token objects
• Sometimes we want to deal with a group of

classes in a general sense
» one or more classes that perform a particular task

but whose names are not known at compile time

27-November-2002 cse413-20-Reflection © 2002 University of Washington 4

Reflection API
• The ability to treat classes as data is provided

by the classes in package java.lang and
java.lang.reflect

• The Reflection API is used to build programs
that work with classes as data objects
» development tools such as debuggers, class

browsers, and application builders
» programs with dynamic behavior enabled by

providing additional class files and one class that
knows how to discover and use the added classes

27-November-2002 cse413-20-Reflection © 2002 University of Washington 5

Example: User Interface builder
• A GUI builder may allow the end-user to

select a Button from a menu of components,
» menu built by scanning a directory for class files

• create the Button object,
» object created by invoking the constructor, but we

don't know the name of the class until runtime
• then click the Button to request an action.

» invoke a method on the newly created object

27-November-2002 cse413-20-Reflection © 2002 University of Washington 6

Example: Application builder

27-November-2002 cse413-20-Reflection © 2002 University of Washington 7

The Class class

• Java runtime system maintains information about
each class in your program while it is running

• The information is maintained in objects of type
java.lang.Class
» Class is a class, just like String, Scanner, Integer, etc.
» Objects of type Class store information about every

class in your program

27-November-2002 cse413-20-Reflection © 2002 University of Washington 8

All types are represented with Class

• Instances of the class Class represent classes and
interfaces in a running Java application.

• Every array also belongs to a class that is
reflected as a Class object that is shared by all
arrays with the same element type and number
of dimensions.

• The primitive Java types (boolean, byte, char,
short, int, long, float, and double), and the
keyword void are represented as Class objects.

27-November-2002 cse413-20-Reflection © 2002 University of Washington 9

Some methods
• Object class

» Class getClass()

Returns the runtime class of an object.

• Class class
» String getName()

Returns the name of the entity (class, interface, array class, primitive
type, or void) represented by this Class object, as a String.

» Class getSuperclass()

Returns the Class representing the superclass of the entity (class,
interface, primitive type or void) represented by this Class.

27-November-2002 cse413-20-Reflection © 2002 University of Washington 10

Example: print class hierarchy
public class SampleSuper {

public static void main(String[] args) {
Object o = System.out; // object to analyze
Class subclass = o.getClass();
Class superclass = subclass.getSuperclass();
System.out.println(subclass.getName());
while (superclass != null) {

String className = superclass.getName();
System.out.println(className);
subclass = superclass;
superclass = subclass.getSuperclass();

}
}

} java.io.PrintStream
java.io.FilterOutputStream
java.io.OutputStream
java.lang.Object

27-November-2002 cse413-20-Reflection © 2002 University of Washington 11

More Class information is available
• Class[] getInterfaces()

» Determines the interfaces implemented by the class or interface
represented by this object.

• Constructor[] getConstructors()

» Returns an array containing Constructor objects reflecting all the
public constructors of the class represented by this Class object.

• Field[] getFields()

» Returns an array containing Field objects reflecting all the accessible
public fields of the class or interface represented by this Class object.

• Method[] getMethods()

» Returns an array containing Method objects reflecting all the public
member methods of the class or interface represented by this Class
object

ReflectionTest.java

27-November-2002 cse413-20-Reflection © 2002 University of Washington 12

Create new object from class name
• static Class forName(String className)

» Returns the Class object associated with the class or interface with the
given string name.

• Object newInstance()

» Creates a new instance of the class represented by this Class object.
» Calls the default constructor (the zero-argument constructor)

String className = "java.util.Random";
Class classDefinition = Class.forName(className);
Object object = classDefinition.newInstance();

SampleNoArg.java

27-November-2002 cse413-20-Reflection © 2002 University of Washington 13

A note of caution
• The reflection capability is very handy for

certain high-level applications or particular
functions in a normal application
» eg, building a menu item list or options list

• Don't use it when other tools more natural to
the Java programming language would suffice
» Specifically, provide callback objects by defining

interfaces and implementing them in one or more
classes. Do not use the Method objects to create
elaborate C-style function pointers.

