
2-December-2002 cse413-21-Parsing © 2002 University of Washington 1

Parsing

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

Parse Tree
Example

a = 1 ; if (a + 1) b = 2 ;

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmt
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9program

program

statement

statement

ifStmt

assignStmt
statement

expr assignStmt
expr expr

intid

id expr

int

id expr

int

G

w

2-December-2002 cse413-21-Parsing © 2002 University of Washington 3

Common Orderings

• Top-down
» Start with the root
» Traverse the parse tree depth-first, left-to-right (leftmost

derivation)
» LL(k)

• Bottom-up
» Start at leaves and build up to the root

Effectively a rightmost derivation in reverse

» LR(k) and subsets (LALR(k), SLR(k), etc.)

2-December-2002 cse413-21-Parsing © 2002 University of Washington 4

Bottom-Up Parsing

• Idea: Read the input left to right
• Whenever we’ve matched the right hand side

of a production, reduce it to the appropriate
non-terminal and add that non-terminal to the
parse tree

• The upper edge of this partial parse tree is
known as the frontier

2-December-2002 cse413-21-Parsing © 2002 University of Washington 5

LR(1) Parsing

• Left to right scan
• Rightmost derivation
• 1 symbol lookahead
• Most practical programming languages have

an LR(1) grammar
• LALR(1), SLR(1), etc. – subsets of LR(1)

2-December-2002 cse413-21-Parsing © 2002 University of Washington 6

Basic Parsing Strategies

• Bottom-up
» Build up tree from leaves

Shift next input or reduce using a production
Accept when all input read and reduced to start symbol of

the grammar

» LR(k) and subsets (SLR(k), LALR(k), …)

remaining input

2-December-2002 cse413-21-Parsing © 2002 University of Washington 7

Example

• Grammar

S ::= aABe
A ::= Abc | b
B ::= d

• Bottom-up Parse

a b b c d e

2-December-2002 cse413-21-Parsing © 2002 University of Washington 8

Details

• The bottom-up parser reconstructs a reverse
rightmost derivation

• Given the rightmost derivation
S =>β1=>β2=>…=>βn-2=>βn-1=>βn = w

parser will discover βn-1=>βn , then βn-2=>βn-1 , etc.
• Parsing terminates when

» β1 reduced to S (success), or
» No match can be found (syntax error)

2-December-2002 cse413-21-Parsing © 2002 University of Washington 9

How Do We Automate This?

• Key: given what we’ve already seen and the
next input symbol, decide what to do.

• Choices:
» Perform a reduction (ie, reduce)
» Look ahead further (ie, shift)

• Can reduce A=>β if both of these hold:
» A=>β is a valid production
» A=>β is a step in this rightmost derivation

• This is known as a shift-reduce parser

2-December-2002 cse413-21-Parsing © 2002 University of Washington 10

Implementing Shift-Reduce Parsers

• Key Data structures
» A stack holding the frontier of the tree
» A string with the remaining input

2-December-2002 cse413-21-Parsing © 2002 University of Washington 11

Shift-Reduce Parser Operations

• Shift – push the next input symbol onto the
stack

• Reduce – if the top of the stack is the right side
of a handle A::=β, pop the right side β and
push the left side A.

• Accept – announce success
• Error – syntax error discovered

Shift-Reduce Example

Stack Input Action
$ abbcde$ shift

S ::= aABe
A ::= Abc | b
B ::= d

2-December-2002 cse413-21-Parsing © 2002 University of Washington 13

How Do We Automate This?

• Definition
» Viable prefix – a prefix of a form that can appear

on the stack of the shift-reduce parser
• Construct a DFA to recognize viable prefixes

given the stack and remaining input
» Perform reductions when we recognize them

• Most compiler building tools are based on this
design and implement LR parsing using a DFA
constructed from a set of grammar productions

2-December-2002 cse413-21-Parsing © 2002 University of Washington 14

Basic Parsing Strategies

• Top-Down
» Begin at root with start symbol of grammar
» Repeatedly pick a non-terminal and expand
» Success when expanded tree matches input
» LL(k)

A

2-December-2002 cse413-21-Parsing © 2002 University of Washington 15

LL(k) Parsers

• An LL(k) parser
» Scans the input Left to right
» Constructs a Leftmost derivation
» Looking ahead at most k symbols

• 1-symbol look ahead is enough for
many practical programming language
grammars

2-December-2002 cse413-21-Parsing © 2002 University of Washington 16

Top-Down Parsing

• Situation: have completed part of a derivation
S =>* wAα =>* wxy

• Basic Step: Pick some production
A ::= β1 β2 … βn

that will properly expand A
to match the input
» Want this to be deterministic

A

2-December-2002 cse413-21-Parsing © 2002 University of Washington 17

Predictive Parsing

• If we are located at some non-terminal A, and
there are two or more possible productions

A ::= α
A ::= β

we want to make the correct choice by looking
at just the next input symbol

• If we can do this, we can build a predictive
parser that can perform a top-down parse
without backtracking

2-December-2002 cse413-21-Parsing © 2002 University of Washington 18

Example

• Programming language grammars are often
suitable for predictive parsing

• Common situation
stmt ::= id = expr ; | return expr ;

| if (expr) stmt | while (expr) stmt
If the first part of the unparsed input begins with
the tokens

IF LPAREN ID(x) …
we know we can expand stmt to an if-statement

2-December-2002 cse413-21-Parsing © 2002 University of Washington 19

LL(1) Property
• FIRST(α)

» the set of tokens that appear as the first symbols of one or
more strings generated from α

» for example, from preceding slide: FIRST(stmt) = {Token.ID,
Token.KW_RETURN, Token.KW_IF, Token.KW_WHILE}

• A grammar has the LL(1) property if,
» for all non-terminals A, if productions A ::= α and A ::= β both

appear in the grammar, then FIRST(α) ∩ FIRST(β) = Ø
• If a grammar has the LL(1) property, we can build a

predictive parser for it

2-December-2002 cse413-21-Parsing © 2002 University of Washington 20

Table-Driven LL(k) Parsers

• A table-driven parser can be constructed from the
grammar (also true for LR(k))

• Example
1. S ::= (S) S
2. S ::= [S] S
3. S ::= ε

• Table

33231S

$][)(

w: (([]))$

2-December-2002 cse413-21-Parsing © 2002 University of Washington 21

LL vs LR

• Table-driven parsers for both LL and LR can
be automatically generated by tools

• LL(1) has to make a decision based on a single
non-terminal and the next input symbol

• LR(1) can base the decision on the entire left
context as well as the next input symbol

• ∴ LR(1) is more powerful than LL(1)
» Includes a larger set of grammars
» but LL(1) is sufficient for many languages

2-December-2002 cse413-21-Parsing © 2002 University of Washington 22

Recursive-Descent Parsers

• An advantage of top-down parsing is that it is
easy to implement by hand

• Key idea: write a function (procedure, method)
corresponding to each non-terminal in the
grammar
» Each of these functions is responsible for

matching its non-terminal with the next part of the
input

2-December-2002 cse413-21-Parsing © 2002 University of Washington 23

Example: Statements
• Grammar
stmt ::= id = expr ;

 | return expr ;
 | if (expr) stmt
 | while (expr) stmt

// parse stmt ::= id=exp; | …

void parseStmt() {

switch(nextToken.getType()) {

case Token.ID:

parseAssignStmt(); break;

case Token.KW_RETURN:

parseReturnStmt(); break;

case Token.KW_IF:

parseIfStmt(); break;

case Token.KW_WHILE:

parseWhileStmt(); break;

default:

error(); break;

}

}

2-December-2002 cse413-21-Parsing © 2002 University of Washington 24

Example (cont)
// parse while (exp) stmt

void parseWhileStmt() {

matchToken(Token.KW_WHILE);
matchToken(Token.LPAREN);

parseExpr();

matchToken(Token.RPAREN);

parseStmt();
}

// parse return exp ;

void parseReturnStmt() {

matchToken(Token.KW_RETURN);

parseExpr();

matchToken(Token.SEMICOLON);
}

Note: your code needs to handle the case when matchToken fails.

2-December-2002 cse413-21-Parsing © 2002 University of Washington 25

Invariant for Functions

• The parser functions need to agree on where
they are in the input

• Useful invariant: When a parser function is
called, the current token (next unprocessed
piece of the input) is the token that begins the
expanded non-terminal
» Corollary: when a parser function is done, it must

have completely consumed input correspond to
that non-terminal

2-December-2002 cse413-21-Parsing © 2002 University of Washington 26

Possible Problems

• Two common problems for recursive-descent
(and LL(1)) parsers
» Left recursion (e.g., E ::= E + T | …)
» Common prefixes on the right hand side of

productions

2-December-2002 cse413-21-Parsing © 2002 University of Washington 27

Left Recursion Problem
• Grammar rule
expr ::= expr + term

| term

• And the bug is????

• Code

// parse expr ::= …

void parseExpr() {

parseExpr();

if (current token is ADD) {

matchToken(ADD);

parseTerm();

}

}

2-December-2002 cse413-21-Parsing © 2002 University of Washington 28

Left Recursion Problem

• If we code up a left-recursive rule as-is, we get
an infinite recursion

• Non-solution: replace with a right-recursive
rule

 expr ::= term + expr | term
» Why isn’t this the right thing to do?

2-December-2002 cse413-21-Parsing © 2002 University of Washington 29

Left Recursion Solution

• Rewrite using right recursion and a new non-
terminal

• Original: expr ::= expr + term | term
• New

expr ::= term exprTail
exprTail ::= + term exprTail | ε

• Properties
» No infinite recursion if coded up directly
» Maintains left associativity (required)

2-December-2002 cse413-21-Parsing © 2002 University of Washington 30

Another Way to Look at This

• Observe that
expr ::= expr + term | term

generates the sequence
term + term + term + … + term

• We can sugar the original rule to show this
» expr ::= term (+ term)*
» or expr ::= term { + term }

• This can simplify the parser code

2-December-2002 cse413-21-Parsing © 2002 University of Washington 31

Code for Expressions

// parse

// expr ::= term { + term }

void parseExpr() {

parseTerm();

while (next symbol is ADD) {

matchToken(ADD);

parseTerm();

}

}

// parse

// term ::= factor { * factor }

void term() {

parseFactor();

while (next symbol is MUL) {

matchToken(MUL);

parseFactor();

}

}

2-December-2002 cse413-21-Parsing © 2002 University of Washington 32

What About Indirect Left Recursion?

• A grammar might have a derivation that leads
to a left recursion

A => β1 =>* βn => Aγ
• There are systematic ways to factor such

grammars
» But we won't need them in our grammar
» refer to a compiler text for more info

2-December-2002 cse413-21-Parsing © 2002 University of Washington 33

Left Factoring

• If two rules for a non-terminal have right hand
sides that begin with the same symbol, we
can’t predict which one to use

• Solution: Factor the common prefix into a
separate production

2-December-2002 cse413-21-Parsing © 2002 University of Washington 34

Left Factoring Example

• Original grammar
ifStmt ::= if (expr) stmt

 | if (expr) stmt else stmt
• Factored grammar

ifStmt ::= if (expr) stmt ifTail
ifTail ::= else stmt | ε

2-December-2002 cse413-21-Parsing © 2002 University of Washington 35

Parsing if Statements
• But it’s easiest to just code

up the “else matches
closest if” rule directly

// parse
// if (expr) stmt [else stmt]

void parseIfStmt() {
matchToken(IF);
matchToken(LPAREN);
parseExpr();
matchToken(RPAREN);
parseStmt();
if (next symbol is ELSE) {

matchToken(ELSE);
parseStmt();

}
}

2-December-2002 cse413-21-Parsing © 2002 University of Washington 36

Another Lookahead Problem

• In languages like FORTRAN, parentheses are used
for array subscripts

• A FORTRAN grammar includes something like
factor ::= id (subscripts) | id (arguments) | …

• When the parser sees “id (”, how can it decide
between an array element reference and a function
call?

2-December-2002 cse413-21-Parsing © 2002 University of Washington 37

Handling id (?)
• Use the type of id to decide

» Requires declare-before-use restriction if we want to
parse in 1 pass

• Use a covering grammar
factor ::= id (commaSeparatedList) | …

and fix later when more information is available
• Semantic analysis after parsing can resolve

details that are difficult to express directly in the
grammar

2-December-2002 cse413-21-Parsing © 2002 University of Washington 38

Top-Down Parsing Concluded

• Works with a smaller set of grammars than
bottom-up, but can be done for most sensible
programming language constructs

• If you need to write a quick-n-dirty parser,
recursive descent is often the method of choice

