
CSE 413 - Au 02 - Programming Languages 11-Dec-2002
Final Review Sheet

Page 1 of 6

Introduction

The final exam will be given 8:30 to 10:20 on Monday, December 16 in our regular
classroom. You will have 1 hour and 50 minutes for the exam.

The exam will be closed book, no notes, no calculators.

The exam is based on the lectures and the homework. The questions will be similar to
the questions in the homework and midterm exam with several small programming
problems too. The exam will cover Java and language scanning and parsing. The final
exam will not include any Scheme questions.

Compiler intro

Interpreter. Execution interleaved with program analysis.

Compiler. Translate program to semantically equivalent program in some other language
like hardware instructions, bytecodes (virtual machine instructions), or even another high
level language (eg, bison input file to C code). Tradeoffs among the various places that
the overhead time can best be spent. Java compiler (javac, jikes) compile Java to
bytecodes. MS .NET compiles to Microsoft intermediate language (MSIL).

As hardware gets faster and more complex (more parallelism) compilers are getting
smarter and also generate code at a higher level. The distinction between compile time
and run time is blurring - some “compilation” is taking place at run time when the run
time executive recognizes that some sections of existing code are executing frequently
and can benefit from further compilation (to a language closer to the hardware).

Compiler front end does source analysis, back end does code synthesis. Analysis is
further split into scanner and parser primarily.

Scanner, Regular Expressions, Deterministic Finite Automata

Scanner converts character stream into tokens that are meaningful to the parser.
Removes noise like comments, whitespace, invalid characters. Each parser-significant
item in the input is represented by a token, agreed on by the scanner and the using
module (eg, parser). Some tokens have attributes. For example an identifier token will
have a string attribute containing the name of the identifier, a numeric constant token will
have a numeric attribute containing the actual value.

Scanners generally based on using regular expressions to define and implement
capabilities. Typical tokens represent the operators, punctuation, keywords, identifiers,
and literals (constants) in a programming language.

CSE 413 - Au 02 - Programming Languages 11-Dec-2002
Final Review Sheet

Page 2 of 6

Be familiar with the terminology of languages. Alphabet: a finite set of symbols. The
alphabet is denoted by Σ (sigma). String: a finite, possibly empty sequence of symbols
from an alphabet. The empty string is denoted by ε (epsilon). Language: a set, often
infinite, of strings.

A language can be specified by a grammar – a generator; a system for producing all
strings in the language (and no other strings) or an automaton – a recognizer; a machine
that accepts all strings in a language (and rejects all other strings). Many different
grammars and automata may specify one language. One grammar or automaton specifies
only one language.

Generally, we specify the lexical structure using regular expressions (RE), and then build
the recognizer using a deterministic finite automaton (DFA). The DFA can be built by
hand as we did in the Scanner class, or it can be built automatically from the RE
definition as is done in Lex/flex. Generally the automatically built DFA is table driven,
transitioning from state to state depending on the input stream until it reaches an accept
state.

REs are defined over some alphabet Σ, and L(re) is the language generated by a particular
regular expression re defined on Σ . In the programming world, Σ was once ASCII and
now is generally Unicode to support internationalization. The basic operations defined
for REs include the following, where a is an element of Σ, and r and s are regular
expressions.

re L(re) Notes
φ {} empty language
ε {ε} empty string
a {a} singleton, for each a∈Σ
rs L(r)L(s) concatentation
r|s L(r)∪L(s) combination (union)
r* L(r)* 0 or more occurences
r+ L(rr*) 1 or more occurences
r? L(r|ε) 0 or 1 occurences
[a-z] L(a|b|…|z) 1 character in given range
[abcxyz] L(a|b|c|x|y|z) 1 of the given characters

Simple DFA representations can be constructed by defining a finite set of states that the
DFA might be in, and identifying the transitions that will take place for a particular input
when the DFA is in a given state. If the DFA is not in an accept state and end of input is
reached or no transition is listed for the next input symbol, then this portion of the input is
not recognized by this DFA. If the DFA is in an accept state when we reach end of input
or no transition is listed for the next input symbol, then this portion of the input is
accepted.

CSE 413 - Au 02 - Programming Languages 11-Dec-2002
Final Review Sheet

Page 3 of 6

An RE that generates integers with an optional leading ‘+’ or ‘-‘ and a leading non-zero
digit followed by zero or more digits selected from the range 0 to 9 could be written as:

r = [+-]?[1-9][0-9]*

A DFA that recognizes strings in L(r) could be drawn as:

start
1

2+|-

3

[1-9]

[1-9] [0-9]

CSE 413 - Au 02 - Programming Languages 11-Dec-2002
Final Review Sheet

Page 4 of 6

Grammar

The syntax of most modern programming languages is specified by a formal grammar,
generally using the conventions of BNF (Backus-Naur Form or Backus-Normal Form).

The rules of a grammar are called productions. The rules contain:

Nonterminal symbols: grammar variables (program, statement, id, etc.)
Terminal symbols: concrete syntax that appears in programs (a, b, c, 0, 1, if, (, …)

Each production takes the form:

nonterminal ::= <sequence of terminals and nonterminals>

In a derivation, an instance of nonterminal can be replaced by the sequence of terminals
and nonterminals on the right of the production. Often, there are two or more
productions for a single nonterminal – can use either at different times.

You do not need to have memorized the D or Java grammar specifications. You should
be able to read a grammar specification like the one I gave you for the D language and
answer questions like: Is this input a valid statement according to the definitions in the
given grammar? or What are all the non-terminals in this grammar?

The examples in the following table are drawn from the following grammar.

valueBlock ::= { get id; }
id ::= r | s | t

This table describes the various symbols we use in describing a grammar.

Symbol Meaning Usage Example

a, b, c elements of alphabet Σ terminals
keyword: get
punctuation symbols: { ; }
identifiers: r s t

w, x, y, z elements of Σ* strings of terminals { get s; }
A, B, C elements of N non-terminals valueBlock, id
X, Y, Z elements of N∪Σ grammar symbols id or get or ;

α, β, γ elements of (N∪Σ)* strings of grammar
symbols { get id; }

Σ finite set of terminals terminals Σ = {get, r, s, t, {, ;, } }

N finite set of non-
terminals non-terminals N = { valueBlock, id }

P subset of N×(N∪Σ)* productions P = {<valueBlock,{ get id; }>,
<id, r>, <id,s>, <id,t> }

CSE 413 - Au 02 - Programming Languages 11-Dec-2002
Final Review Sheet

Page 5 of 6

Parsing

Parsing is the process of building a derivation for a given input string w according to the
relevant grammar G. If the derivation can be built, then the string w is in the L(G) and
we can traverse the parse tree and process w in a meaningful way. We may not actually
build an explicit tree, but the parse proceeds as though it were doing a tree traversal.

As mentioned above in the lexical scanner section, we could do the entire job of cleaning
up and tokenizing the input as part of the grammar, but that would complicate the
grammar considerably. Splitting the tasks between the lexical scanner and the parser
allows us to implement both functions more cleanly.

I described a simple grammar example G in lecture 19.

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmt
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

If we succeed in building a derivation for a string w according to the grammar G then we
can draw the parse tree for the string according to the grammar. Given a grammar G and
a string w, you should be able to parse the string and draw the associated parse tree that
shows each of the steps in the derivation.

a = 1 ; if (a + 1) b = 2 ;

program

program

statement

statement

ifStmt

assignStmt
statement

expr assignStmt
expr expr

intid

id expr

int

id expr

int

w

CSE 413 - Au 02 - Programming Languages 11-Dec-2002
Final Review Sheet

Page 6 of 6

Production. A production is a replacement rule. Productions can be written in a number
of ways, but all of them indicate a non-terminal and the associated string of grammar
symbols that it represents. Common formats for writing productions include A→α, A::=
α, and <A, α>.

Derivation. Using the productions in a grammar we can move from a non-terminal A to a
string of terminals w by repeatedly applying appropriate productions. For example, if
A→β is an element of P (ie, it is a defined production), and we have the string of
grammar symbols αAγ, then we say “αAγ derives αβγ”, written as αAγ=>αβγ. If there
is a chain of one or more derivations that can get us from a non-terminal A to a string of
terminals w, then we say that A derives w, written A=>*w and L(A) = {w | A =>* w}.

Ambiguous grammar. A grammar is ambiguous is there are two or more derivations for a
particular string w. Ambiguous grammars can be fixed by rewriting the grammar with
more non-terminals to resolve the ambiguity or by adding “special case” checks to the
parser.

Bottom up parse. LR(1). Scan the input left to right and produce a right-most derivation
starting at the leaves, using 1-symbol look ahead. Such a parser is built by the parser
tools Yacc/bison/CUP, and uses a shift-reduce architecture.

Top down parse. LL(1). Scan the input left to right and produce a left-most derivation
starting at the root (the start symbol), using 1-symbol look ahead. Such a parser is
relatively easy to build by hand, using a recursive descent architecture.

A grammar is said to be LL(1) if for all non-terminals A with productions A→α and
A→β it is true that FIRST(α) ∩ FIRST(β) = Ø. In other words, you have to be able to
tell which production to use by looking at the next symbol and knowing that it
unambiguously identifies the correct production.

A recursive descent parser will enter an infinite recursion if a production is left-recursive,
that is, the non-terminal on the left side of the production is the first grammar symbol on
the right side of the production. One solution is to rewrite the production with an added
non-terminal that can take the form of the tail of the expression or the empty string ε.

Scanner and Parser Tools

I discussed several tools in class that can be used to build scanners from well-defined
regular expressions and parsers from well-defined grammars. The input to these tools is
based directly on the knowledge we have developed about regular expressions and
grammars, plus some arbitrary code to perform whatever functions are required by your
application. Remember these tools when you need to build a scanning or parsing
application in the future. (I won’t ask you to use flex and bison on the final to build a
parser, but you will be able to impress a future employer by doing so in an afternoon on
the job.)

