Credits

Compilers

CSE 413, Autumn 2005
Programming Languages

http://www.cs.washington.edu/educati on/courses/413/05au/

* Much of the material in the following lecturesis
derived from lectures taught by Hal Perkins for CSE
413 and CSE 582

» and previous classes ...

» Cornell CS 412-3 (Teitelbaum, Perkins)
» Rice CS 412 (Cooper, Kennedy, Torczon)
» UW CSE 401 (Chambers, Ruzzo, et al)

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

Books

* Primary Reference

» Compilers. Principles, Techniques, and Tools, by Aho,
Sethi, Ullman
e the"Dragon Book”

» Other references
» Engineering a Compiler by Keith Cooper & Linda
Torczon
» Modern Compiler Implementation in Java, by Appel

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

Why are we doing this?

» Executethis...

int nPos = O;
intk =0;
while (k < length) {
if (a[k] = 0) {
nPos++;
}
}

 How?
» many and varied are the ways. ...

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

Interpreters & Compilers

Common Issues

e Interpreter
» A program that reads an source program and
produces the results of executing that program
o Compiler
» A program that translates a program from one
language (the source) to another (the target)

o Compilers and interpreters both must read the
input — a stream of characters— and
“understand” it; analysis

whil e(k<l ength){<nl><tab>i f (a[k
] >0) <nl> <tab> <tab> n Pos + +; } <nl> <tab>}

9-Nov-2005 cse413-14-compilers © 2005 University of Washington 5 9-Nov-2005 cse413-14-compilers © 2005 University of Washington
|nterpreter Compiler
* Interpreter Read and analyze entire program

» Execution engine
» Program execution interleaved with analysis

running = true;

while (running) {
analyze next statement;
execute that statement;

}
» May involve repeated analysis of some statements
(loops, functions)

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

» Trandate to semantically equivalent programin
another language
» Presumably easier to execute or more efficient
» Should “improve” the program in some fashion

» Offline process

» Tradeoff: compile time overhead (preprocessing step) vs
execution performance

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

Typical Implementations

Hybrid approaches

o Compilers
» FORTRAN, C, C++, Java, C#, COBOL, etc. etc.
» Strong need for optimization, etc.

* Interpreters
» PERL, Python, awk, sed, sh, csh, postscript
printer, JavaVM

» Effectiveif interpreter overhead islow relative to
execution cost of language statements

» Functional languages like Scheme and Smalltalk
where the environment is dynamic

o Weéll-known example: Java
» Compile Java source to byte codes — Java Virtual Machine
language (.classfiles)
» Execution
 Interpret byte codes directly, or
e Compile some or al byte codes to native code

(particularly for execution hot spots)
Just-In-Time compiler (JIT)

e Variation: VS.NET
» Compilers generate MSIL
» All IL compiled to native code before execution

9-Nov-2005 cse413-14-compilers © 2005 University of Washington 9

9-Nov-2005 cse413-14-compilers © 2005 University of Washington 10

Why Study Compilers? Programmer

Why Study Compilers? Designer

 Become a better programmer

» Insight into interaction between languages, compilers, and
hardware

» Understanding of implementation techniques
» What isall that stuff in the debugger anyway?
» Better intuition about what your code does

* You might even write a compiler some day!

» You'll aimost certainly write parsers and interpretersif you
haven't aready

9-Nov-2005 cse413-14-compilers © 2005 University of Washington 11

o Compiler techniques are everywhere
» Parsing (little languages, interpreters)
» Database engines
» Al: domain-specific languages
» Text processing
» Tex/LaTex -> dvi -> Postscript -> pdf
» Hardware: VHDL ; model-checking tools
» Mathematics (Mathematica, Matlab)

9-Nov-2005 cse413-14-compilers © 2005 University of Washington 12

Why Study Compilers? Theoretician

 Fascinating blend of theory and engineering
» Direct applications of theory to practice
» Parsing, scanning, static analysis
» Some very difficult problems (NP-hard or worse)

» Resource allocation, “optimization”, etc.
* Need to come up with good-enough solutions

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

13

Why Study Compilers? Education

* |deas from many parts of CSE
» Al: Greedy algorithms, heuristic search
» Algorithms: graph agorithms, dynamic programming,
approximation algorithms
» Theory: Grammars DFAs and PDAS, pattern matching,
fixed-point algorithms
» Systems: Allocation & naming, synchronization, locality
» Architecture: pipelines & hierarchy management,
instruction set use
» Application to many other problem domains
» understanding what can be done expands your tool set

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

14

Structure of a Compiler

* First approximation
» Front end: analysis

» Read source program and understand its structure and
meaning

» Back end: synthesis
» Generate equivalent target language program

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

15

|mplications

* Must recognize valid programs (& complain about
invalid ones)

* Must generate correct code
* Must manage storage of all variables
* Must agree with OS & linker on target format

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

16

More Implications

May need some sort of Intermediate Representation (IR)
Front end maps source into IR
Back end maps IR to target machine code

Front and back may be mixed together with the interface
between them implicitly defined

9-Nov-2005 cse413-14-compilers © 2005 University of Washington 17

Front End source tokens

« Split into two parts

» Scanner: Responsible for converting character
stream to token stream
» Also strips out white space, comments

» Parser: Reads token stream; generates IR
 Both of these can be generated automatically

or by hand

» Source language specified by aformal grammar

» Tools read the grammar and generate scanner &
parser (either table-driven or hard coded)

Tokens

» Token stream: Each significant lexical chunk
of the program is represented by a token
» Operators & Punctuation: {}[]!+-=*;: ...
» Keywords: if while return goto
» ldentifiers: id & actual name

» Constants: kind & value; int, floating-point
character, string, ...

Scanner Example

9-Nov-2005 cse413-14-compilers © 2005 University of Washington 19

* Input text
// this line is a simple comment
if x>=y)y=42;

» Token Stream

[1F][raren [1D |[oP_ceQ|[1IDW) |
| RPAREN || 1D(y) | | OP_ASSIGN || INT(42) || scOLON |

» Note: tokens are atomic items, not character strings
« objectsof class Token

9-Nov-2005 cse413-14-compilers © 2005 University of Washington 20

Parser Output (IR)

» Many different forms
» (Engineering tradeoffs)

» Common output from a parser is an abstract
syntax tree

» Essential meaning of the program without the
syntactic noise

Parser Example

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

21

» Token Stream Input » Abstract Syntax Tree

[1F][LPAReN [1ID() |

[ceQ || 1D(y) | RPAREN | é

| ID(y) | | BECOMES |

e s

9-Nov-2005 cse413-14-compilers © 2005 University of Washington 22

Static Semantic Analysis

 During or (more common) after parsing
» Type checking

» Check for language requirements like “declare
before use”, type compatibility

» Preliminary resource alocation

» Collect other information needed by back end
analysis and code generation

Back End

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

23

» Responsibilities
» Trandate IR into target machine code
» Should produce fast, compact code

» Should use machine resources effectively
* Registers
* Instructions
* Memory hierarchy

9-Nov-2005 cse413-14-compilers © 2005 University of Washington 24

Back End Structure The Result
» Typicaly split into two major parts with sub . = x86 assembly language
haseS i f (X >= y) nmov eax, [ebp+16]
p y = 42: cnp eax, [ebp- 8]
» “Optimization” — code improvements : JnL . [ebL_lg] 42
* May well tranglate parser IR into another IR L17: e
» Wewon't do much with this part of the compiler
. Java bytecode
» Code generation i load 1
« Instruction selection & scheduling 5. iload 2 Postscript
. . . P Xy ge
* Register alocation g; 'blf B'ugzp' 2212 (/y 42 def)
11: istore 2 i f
12:
9-Nov-2005 cse413-14-compilers © 2005 University of Washington 25 9-Nov-2005 cse413-14-compilers © 2005 University of Washington 26
Some Ancient History Some L ater History
« 1950's. Existence proof » 19/0's

» FORTRAN 1 (1954) — competitive with hand-
optimized code

e 1960's
» New languages. ALGOL, LISP, COBOL
» Formal notations for syntax

» Fundamental implementation techniques
» Stack frames, recursive procedures, €etc.

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

27

» Syntax: formal methods for producing compiler
front-ends; many theorems

» 1980's

» New languages (functional; Smalltalk & object-
oriented)

» New architectures (RISC machines, paralel
machines, memory hierarchy issues)

» More attention to back-end issues

9-Nov-2005 cse413-14-compilers © 2005 University of Washington 28

Some Recent History

e 1990's— now
» Compilation techniques appearing in many new
places
o Just-in-time compilers (JITs)
* Whole program analysis
» Phased compilation — blurring the lines between
“compiletime” and “runtime”

» Compiler technology critical to effective use of
new hardware (RISC, Itanium, complex
memories)

* “May you study compilersin interesting
times...”, Cooper & Torczon

9-Nov-2005 cse413-14-compilers © 2005 University of Washington

29

