
26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 1

Postscript Control Flow

CSE 413, Autumn 2005
Programming Languages

http://www.cs.washington.edu/education/courses/413/05au/

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 2

Variables
• Postscript uses dictionaries to associate a name

with an object value
» /x 3 def

• associate value 3 with key x

» /inch {72 mul} def
• define function to convert from inches to points

• Postscript dictionaries are similar to Java
HashMaps
» key / value pairs

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 3

Several Dictionaries
• When the interpreter encounters a name, it

searches the current dictionaries for that key
• At least three dictionaries are always present

» user dictionary
• writeable dictionary in local virtual memory associates names

with procedures and variables for the program

» global dictionary
• writeable dictionary in global virtual memory

» system dictionary
• read-only dictionary associates keywords with built-in actions

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 4

Dictionary Stack

• References to the dictionaries are kept on the
dictionary stack

• Interpreter looks up a key by searching the
dictionaries from the top of stack down
» search starts with current dictionary on top of stack
» initially, user dictionary is top of stack
» system dictionary is bottom of stack
» can define and push additional user dictionaries on top

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 5

Virtual Memory

• Postscript environment includes stacks and
virtual memory

• Operand stack contains simple objects (eg,
integers) and references to composite objects
(eg, strings, arrays)

• Virtual memory (VM) is a storage pool for the
values of all composite objects

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 6

save and restore

• Simple user programs define their objects in local
VM

• The save operator makes a snapshot of local VM
• The restore operator throws away the current

local VM and restores the state from the last save
• Local VM with save/restore pairs is used to

encapsulate information whose lifetime conforms
to a hierarchical structure like a page

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 7

Defining and using a variable
• Define a variable ppi and give it a value

» /ppi 72 def
» push the name ppi on the operand stack as a literal
» push the number 72 on the operand stack
» pop both items and store in the current dictionary using ppi

as the key and 72 as the value
• Use the variable's value

» ppi 2 mul
» find the value of ppi (72) and push it
» push the number 2
» pop both operands, multiply, push the result

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 8

Defining and using a procedure
• Define a procedure name and give it a value

» /inch {72 mul} def
» push the name inch on the operand stack as a literal
» push mark, 72, mul on the operand stack
» pop to the mark, create an executable array, and store in

the current dictionary using inch as the key and the
executable array as the value

• Use the procedure's value
» 2 inch
» push the number 2
» look up the name inch, find the procedure, execute
» push 72, pop both numbers, multiply, push the result

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 9

fm constructors are procedures
% Circle constructor.

% FM call format => Circle(radius)
% PS call format => radius Circle.Circle
% Result: Reference to a fields array with
% values set by arguments or defaults.

/Circle.Circle {
Circle.fields.SIZEOF array % Create the array
dup Circle.fields.radius % radius field
4 -1 roll put % store radius

dup Circle.fields.grayfill 0.5 put
dup Circle.fields.graystroke 0.0 put
dup Circle.fields.linewidth 1.0 put
} def

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 10

Boolean operators

• Comparison operators
» eq, ne, gt, lt, ge, le

• logical operators
» not, and, or, xor
» true, false

GS>2 3 ge
GS<1>==
false
GS>2 2.0 eq ==
true
GS>(abc) (acc) lt ==
true
GS>[1 2 3] dup eq ==
true
GS>[1 2 3] [1 2 3] eq ==
false
GS>

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 11

Conditionals and loops

• There are several operators for specifying the
flow of control in a Postscript program

• Executable arrays are a basic element for the
control flow operators
» the code block (executable array) is defined in-line
» {add 2 div} - calculate 2-value average
» the curly brackets defer interpretation of the code and

force the creation of a new executable array
(procedure) object

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 12

if, ifelse operators
• Take a boolean object and one or two executable

arrays on the stack.
• Select and execute one of the executable arrays

depending on the boolean value
• leaves nothing on the stack

» the code that executes may leave something ...
» bool proc if
» bool proc1 proc2 ifelse

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 13

an if example
% if current point beyond right margin, do LF CR.

/chkforendofline
{currentpoint pop % discard y position
RM gt % current x > right margin?
{
0 lineheight neg translate % "linefeed"
LM 0 moveto % "carriage return"
} if
} def

conditional.ps

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 14

repeat operator

• Repeat a procedure body n times
• n proc repeat

GS>1 2 3 4 3 {pop} repeat
GS<1>==
1
GS>

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 15

for operator

• Controls the standard indexed counting loop

GS>1 1 4 {} for
GS<4>pstack
4
3
2
1
GS<4>clear
GS>0 1 1 4 {add} for
GS<1>==
10
GS>

• initial increment limit proc for
» the control value is calculated
» if greater than limit, the loop exits
» otherwise the control value is pushed and

the procedure is executed

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 16

loop and exit operators

• Repeat a procedure an indefinite number of times,
usually until some condition is met

• The loop operator takes a procedure and executes it
until an exit command is encountered within the
procedure

• proc loop
» there must be an exit encountered within the body of the

procedure, or the code will loop forever

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 17

loop example
% call: radius y lineofcircles
/lineofcircles {
/ypos exch def
/radius exch def
/xpos 0 def
{xpos pagewidth le

{ doCircle increase-x }
{ exit }
ifelse

} loop
} def

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 18

Recursion

• A loop can be set up in a program by having a
procedure call itself
» recursion must always:

• have a base case (an exit condition)
• make progress towards the base case during recursion

26-Oct-2005 cse413-09-controlflow © 2005 University of Washington 19

Recursion example

/fractArrow {
gsave
kXScale kYScale scale
kLineWidth setlinewidth
down
doLine
depth maxdepth le
{135 rotate fractArrow
-270 rotate fractArrow
} if
up
grestore
} def

