
10-Oct-2005 cse413-01-introduction © 2005 University of Washington 1

Introduction

CSE 413, Autumn 2005
Programming Languages

http://www.cs.washington.edu/education/courses/413/05au/

10-Oct-2005 cse413-01-introduction © 2005 University of Washington 2

References

• Sections 1-1.1.5, Structure and Interpretation of 
Computer Programs

• Section 2, Revised5 Report on the Algorithmic 
Language Scheme (R5RS)

• Everything related to the class is available from the 
class web site
» http://www.cs.washington.edu/education/courses/413/05au/

10-Oct-2005 cse413-01-introduction © 2005 University of Washington 3

Elements of Programming

• Primitive expressions
» simplest entities of the language

• Means of combination
» by which compound elements are built

• Means of abstraction
» by which compound elements can be named and 

manipulated as units

10-Oct-2005 cse413-01-introduction © 2005 University of Washington 4

There are many "languages"

• Computer programming 
» Fortran, Basic, Cobol, C, Pascal, Java, Python, …

• Shell and scripting languages
» Perl, bash, AppleScript, JavaScript, ...

• Applications
» Postscript, Photoshop, VBA, Matlab, POVRay, ...

• Sciences
» DNA, Chemistry, Plant Growth, ...



10-Oct-2005 cse413-01-introduction © 2005 University of Washington 5

Training and Education

• Training
» learn the specifics of a known language
» build up a "tool chest" so that you can perform 

specific tasks in a particular field
• Education

» learn how to recognize valid abstractions and 
synthesize them in new and useful ways in many 
different knowledge domains

• We'll do some of both in this class
10-Oct-2005 cse413-01-introduction © 2005 University of Washington 6

What is Scheme?

• Is Scheme a version of Lisp?
» Yes: Scheme has a strong syntactic resemblance to 

Lisp. Editing Scheme on a computer is much 
easier than editing most other syntaxes. Students 
take about one day to learn the syntax, and can 
then move on to learning real concepts.

» No: Beyond this, Scheme shares very little with 
Lisp. Don't be mislead by the syntactic similarity; 
Scheme is a fairly different language with a much 
more refined and modern philosophy.

http://www.teach-scheme.org/Notes/scheme-faq.html

10-Oct-2005 cse413-01-introduction © 2005 University of Washington 7

Why Scheme?

• The simplicity of the language lets us work on 
problem solving, rather than just syntax issues

• Flexibility of the language lets us see that the 
structure of C/Java/Basic is not the only way 
to express problem solutions

• Variety is the spice of life
» study more than one language paradigm and study 

the relationship between design paradigms
» professional programmers switch languages every 

few years anyway, so start practicing now
10-Oct-2005 cse413-01-introduction © 2005 University of Washington 8

Example DrScheme screen

Definitions window
enter programs here

Interactions window
enter expressions here



10-Oct-2005 cse413-01-introduction © 2005 University of Washington 9

Definitions window

• Define programs in the Definitions window
» save the contents of the window to a file using 

menu item File - Save Definitions As … 
» load existing files with menu item File - Open
» execute the contents of the definitions window by 

clicking on the "Execute" button
» check and highlight syntax by clicking on the 

"Check Syntax" button
» Re-indent all with control-i

10-Oct-2005 cse413-01-introduction © 2005 University of Washington 10

Interactions Window

• Evaluate simple expressions directly in the 
Interactions window

• Position the cursor after the ">", then type in 
your expression
» DrScheme responds by evaluating the expression 

and printing the result
» recall previous expression with escape-p

• Expressions can reference symbols defined 
when you executed the Definitions window

10-Oct-2005 cse413-01-introduction © 2005 University of Washington 11

Think functionally
• Programming that makes extensive use of 

assignment is known as imperative programming
» The order of assignments changes the operation of the 

program because the state is changed by assignment
• Programming without the use of assignment 

statements is known as functional programming
» In such a language, all procedures implement well-

defined mathematical functions of their arguments 
whose behavior does not change

» Scheme is heavily oriented towards functional style
10-Oct-2005 cse413-01-introduction © 2005 University of Washington 12

Primitive Expressions
• constants

» integer : -1, 0 3
» rational : ½, ¾
» real : 0.333, 3.1415926535
» boolean : #t, #f

• variable names (symbols)
» Names can contain almost any character except 

white space and parentheses
» Stick with simple names like value, x, iter, ...



10-Oct-2005 cse413-01-introduction © 2005 University of Washington 13

Compound Expressions
• Either a combination or a special form
• Combination : (operator operand operand …)

» there are quite a few pre-defined operators
• +, *, abs, sin, etc

» We can define our own operators
• area-of-disk

• Special form
» keywords in the language
» eg, define

10-Oct-2005 cse413-01-introduction © 2005 University of Washington 14

Combinations
• (operator operand operand …)
• this is prefix notation, the operator comes first
• a combination always denotes a procedure 

application
• the operator is a symbol or an expression, the 

applied procedure is the associated value
» +, -, abs, my-function, foop?
» characters like * and + are not special; if they do 

not stand alone then they are part of some name

10-Oct-2005 cse413-01-introduction © 2005 University of Washington 15

Evaluating Combinations
• To evaluate a combination

» Evaluate the subexpressions of the combination
» Apply the procedure that is the value of the leftmost 

subexpression (the operator) to the arguments that are 
the values of the other subexpresions (the operands)

• For example
» (* 5 99) is a combination consisting of three 

subexpressions
» Scheme evaluates this combination and returns 495

10-Oct-2005 cse413-01-introduction © 2005 University of Washington 16

Percolate values up a tree

Evaluate
(* (+ 2 (* 4 6))

(+ 3 5 7))



10-Oct-2005 cse413-01-introduction © 2005 University of Washington 17

Evaluating Special Forms

• Special forms have unique evaluation rules
• (define x 3) is an example of a special 

form; it is not a combination
» the evaluation rule for a simple define is "associate 

the given name with the given value"
• There are more special forms which we will 

encounter, but there are surprisingly few of 
them compared to other languages


