Lists

CSE 413, Autumn 2005
Programming Languages

http://www.cs.washington.edu/educati on/courses/413/05au/

19-Oct-2005 cse413-06-lists © 2005 University of Washington

References

e Sections 2.2-2.2.1, Sructure and Inter pretation of
Computer Programs

 Section 6.3.2, Revised® Report on the Algorithmic
Language Scheme (R5RS)

19-Oct-2005 cse413-06-lists © 2005 University of Washington

Pairs are the glue

» Using cons to build pairs, we can build data
structures of unlimited complexity
* Wecanroll our own
» if not too complex or if performance issues
» We can adopt a standard and use it for the
basic elements of more complex structures
» lists

19-Oct-2005 cse413-06-lists © 2005 University of Washington

Rational numbers with pairs

» An example of afairly smple data structure
that could be built directly with pairs

(meke-rat 1 2)

(define (nake-rat n d)
(cons n d))

(define (nunmer x)
(car x))

1 2

(define (denom x) . .
(cdr x))

19-Oct-2005 cse413-06-lists © 2005 University of Washington

Extensibility

» What if we want to extend the data structure
somehow?

* What if we want to define a structure that has
more than two elements?

» We can use the pairs to glue pairs together in a
more general fashion and so allow more
general constructions

» Lists

19-Oct-2005 cse413-06-lists © 2005 University of Washington 5

Fundamental list structure

* By convention, alist is asequence of linked pairs
» car of each pair isthe data e ement
» cdr of each pair pointsto list tail or the empty list

e — /]
Eipnra

19-Oct-2005 cse413-06-lists © 2005 University of Washington 6

List construction

(define e (cons 1 (cons 2 (cons 3 '()))))

e —|/]
Sty
2] [,

(define e (list 1 2 3))

19-Oct-2005 cse413-06-lists © 2005 University of Washington 7

procedurel | st
(list abec...)

* | i st returnsanewly allocated list of its arguments

» the arguments can be atomic items like numbers or quoted
symbols

» the arguments can be other lists
» The backbone structure of alist is aways the same

» asequence of linked pairs, ending with a pointer to null
(the empty list)

» thecar element of each pair isthelist item

» thelist items can be other lists

19-Oct-2005 cse413-06-lists © 2005 University of Washington 8

List structure

Rational numbers with lists

(define a (list 4 5 6)) (define b (list 7 a 8))
2 (rmake-rat 1 2)
(o] df (define (make-rat n d)

(list nd))

(4] [old] ‘
L1 (define (nuner x) / \
(car x)) -
[6] 1
(define (denom x) . —
d
(cadr x))
19-Oct-2005 cse413-06-lists © 2005 University of Washington 9 19-Oct-2005 cse413-06-lists © 2005 University of Washington 10
Examples of list building Lists and recursion
» A listiszero or more connected pairs
(cons 1 (cons 2 * ())) » Each nodeisapair
RN . Th_usthe pgrts of alist (thispair, following
(cons 1 (list 2)) v pairs) arelists
1 - -
» And so recursion is a natural way to express
(list 1 2) . .
list operations
19-Oct-2005 cse413-06-lists © 2005 University of Washington 11 19-Oct-2005 cse413-06-lists © 2005 University of Washington 12

cdr down

» We can process each element in turn by
processing the first element in the list, then
recursively processing the rest of the list

base case
(define (length m
(if (null? m /
0 }

reduction st
(+1 (Tength (car m)))) J—" =

sum theitemsin alist

19-Oct-2005 cse413-06-lists © 2005 University of Washington 13

(add-items (list 2 5 4)) ﬂ

A s
def i dd- i un
(?i'fngnﬁf‘.? e

(+ (car m (add-itenms (cdr m))))

(+2(+5(+40))

19-Oct-2005 cse413-06-lists © 2005 University of Washington 14

cons up

» Wecan build alist to return to the caller piece
by piece as we go along through the input list

(define (reverse m

(define (iter shrnk

(i f (null? shrnk)

gr ow
(iter (cdr shrnk)((cons (car shrnk) grow))))
(iter m'()))

multiply each list element by 2

(double-all (list 4 0 -3)) ol d
(o] 4]
, 0] [sl1
(define (double-all m
(if (null? m
()

(cons (* 2 (car nm)) (double-all (cdr m))))

19-Oct-2005 cse413-06-lists © 2005 University of Washington 15

(cons 8 (cons 0 (cons -6 '())))

0] [sl/]

19-Oct-2005 cse413-06-lists © 2005 University of Washington 16

Variable number of arguments

» We can define a procedure that has zero or
more required parameters, plus provision for a
variable number of parameters to follow

» Therequired parameters are named in the def i ne
statement as usual

» They arefollowed by a"." and a single parameter
name

At runtime, the single parameter name will be
given alist of al the remaining actual
parameter values

19-Oct-2005 cse413-06-lists © 2005 University of Washington 17

(sane-parity x . Yy)

(define (sane-parity x . vy)

> (same-parity 1 23 456 7)
(1357

> (same-parity 2 3456 7)
(2 4 6)

>

Thefirst argument value is assigned to X,
al therest are assigned asalisttoy

19-Oct-2005 cse413-06-lists © 2005 University of Washington

18

map

» We can use the general purpose function map

to map over the elements of alist and apply
some function to them

(define (map p m
(if (null? m
"0
(cons (p (car m)
(map p (cdr m))))

(define (double-all m
(map (lanbda (x) (* 2 x)) m)

19-Oct-2005 cse413-06-lists © 2005 University of Washington 19

