
19-Oct-2005 cse413-06-lists © 2005 University of Washington 1

Lists

CSE 413, Autumn 2005
Programming Languages

http://www.cs.washington.edu/education/courses/413/05au/

19-Oct-2005 cse413-06-lists © 2005 University of Washington 2

References

• Sections 2.2-2.2.1, Structure and Interpretation of 
Computer Programs

• Section 6.3.2, Revised5 Report on the Algorithmic 
Language Scheme (R5RS)

19-Oct-2005 cse413-06-lists © 2005 University of Washington 3

Pairs are the glue

• Using cons to build pairs, we can build data 
structures of unlimited complexity

• We can roll our own
» if not too complex or if performance issues

• We can adopt a standard and use it for the 
basic elements of more complex structures
» lists

19-Oct-2005 cse413-06-lists © 2005 University of Washington 4

Rational numbers with pairs

• An example of a fairly simple data structure 
that could be built directly with pairs

(define (make-rat n d)
(cons n d))

(define (numer x)
(car x))

(define (denom x)
(cdr x))

(make-rat 1 2)

1 2



19-Oct-2005 cse413-06-lists © 2005 University of Washington 5

Extensibility

• What if we want to extend the data structure 
somehow?

• What if we want to define a structure that has 
more than two elements?

• We can use the pairs to glue pairs together in a 
more general fashion and so allow more 
general constructions
» Lists

19-Oct-2005 cse413-06-lists © 2005 University of Washington 6

Fundamental list structure
• By convention, a list is a sequence of linked pairs

» car of each pair is the data element 
» cdr of each pair points to list tail or the empty list 

e

1

2

3

19-Oct-2005 cse413-06-lists © 2005 University of Washington 7

List construction
(define e (cons 1 (cons 2 (cons 3 '()))))

e

1

2

3

(define e (list 1 2 3))

19-Oct-2005 cse413-06-lists © 2005 University of Washington 8

procedure list
(list a b c ...)

• list returns a newly allocated list of its arguments
» the arguments can be atomic items like numbers or quoted 

symbols
» the arguments can be other lists

• The backbone structure of a list is always the same
» a sequence of linked pairs, ending with a pointer to null 

(the empty list)
» the car element of each pair is the list item
» the list items can be other lists



19-Oct-2005 cse413-06-lists © 2005 University of Washington 9

List structure

4

5

6

(define a (list 4 5 6))

a

(define b (list 7 a 8))

4

5

6

a

7

8

b

19-Oct-2005 cse413-06-lists © 2005 University of Washington 10

Rational numbers with lists

(define (make-rat n d)
(list n d))

(define (numer x)
(car x))

(define (denom x)
(cadr x))

1

2

(make-rat 1 2)

19-Oct-2005 cse413-06-lists © 2005 University of Washington 11

Examples of list building

(list 1 2)

(cons 1 (cons 2 '()))

1

2

(cons 1 (list 2))

19-Oct-2005 cse413-06-lists © 2005 University of Washington 12

Lists and recursion

• A list is zero or more connected pairs
• Each node is a pair
• Thus the parts of a list (this pair, following 

pairs) are lists
• And so recursion is a natural way to express 

list operations



19-Oct-2005 cse413-06-lists © 2005 University of Washington 13

(define (length m)
(if (null? m)

0
(+ 1 (length (cdr m)))))

cdr down

• We can process each element in turn by 
processing the first element in the list, then 
recursively processing the rest of the list 

base case

reduction step

19-Oct-2005 cse413-06-lists © 2005 University of Washington 14

sum the items in a list

(add-items (list 2 5 4))

2

5

4
(define (add-items m)

(if (null? m)
0
(+ (car m) (add-items (cdr m)))))

(+ 2 (+ 5 (+ 4 0)))

19-Oct-2005 cse413-06-lists © 2005 University of Washington 15

(define (reverse m)
(define (iter shrnk grow)
(if (null? shrnk)

grow
(iter (cdr shrnk) (cons (car shrnk) grow))))

(iter m '()))

cons up

• We can build a list to return to the caller piece 
by piece as we go along through the input list

19-Oct-2005 cse413-06-lists © 2005 University of Washington 16

multiply each list element by 2

(define (double-all m)
(if (null? m)

'()
(cons (* 2 (car m)) (double-all (cdr m)))))

(double-all (list 4 0 -3))

(cons 8 (cons 0 (cons -6 '())))

8

0

-6

4

0

-3



19-Oct-2005 cse413-06-lists © 2005 University of Washington 17

Variable number of arguments
• We can define a procedure that has zero or 

more required parameters, plus provision for a 
variable number of parameters to follow
» The required parameters are named in the define

statement as usual
» They are followed by a "." and a single parameter 

name
• At runtime, the single parameter name will be 

given a list of all the remaining actual 
parameter values

19-Oct-2005 cse413-06-lists © 2005 University of Washington 18

(same-parity x . y)

(define (same-parity x . y)
…

> (same-parity 1 2 3 4 5 6 7)
(1 3 5 7)
> (same-parity 2 3 4 5 6 7)
(2 4 6)
> 

The first argument value is assigned to x,
all the rest are assigned as a list to y

19-Oct-2005 cse413-06-lists © 2005 University of Washington 19

map

• We can use the general purpose function map
to map over the elements of a list and apply 
some function to them
(define (map p m)

(if (null? m)
'()
(cons (p (car m))

(map p (cdr m)))))

(define (double-all m)
(map (lambda (x) (* 2 x)) m))


