Parsing & Context-

Free Grammars

11/19/2008 1

" I
Agenda for Today

m Parsing overview
m Context free grammars
m Ambiguous grammars

11/19/2008

" S
Parsing

m The syntax of most programming languages can
be specified by a context-free grammar (CGF)

m Parsing: Given a grammar G and a sentence w
in L(G), traverse the derivation (parse tree) for
w in some standard order and do something
useful at each node

The tree might not be produced explicitly, but the
control flow of a parser corresponds to a traversal

11/19/2008

" I
Old
Example

program

program :.= Statement | program statement
statement .= assignStmt | ifStmt
assignStmt .= id = expr

i1Stmt .= if (expr) statement

expr::=1d | int| expr+ expr
id=alb|c|i]ljlk]n]|x]y]z
int::=0]1]12|3]4]5]6|7]8]9

,Urogram/\

—

Statement
assignstmt
ia | expr
nt
w— a=1 ;

11/19/2008

Statement
I1S. ll‘mt
Statement
assignstmt
7| o
/'/:71‘

» I
“Standard Order”

m For practical reasons we want the parser
to be deterministic (no backtracking), and
we want to examine the source program
from left to right.

(i.e., parse the program in linear time in the
order it appears in the source file)

11/19/2008

" I
Common Orderings

m [op-down
Start with the root

Traverse the parse tree depth-first, left-to-right
(leftmost derivation)

LL(k)
m Bottom-up

Start at leaves and build up to the root
m Effectively a rightmost derivation in reverse(!)

LR(k) and subsets (LALR(k), SLR(k), etc.)

11/19/2008

"
“Something Useful”

m At each point (node) in the traversal, perform
some semantic action
Construct nodes of full parse tree (rare)
Construct abstract syntax tree (common)

Construct linear, lower-level representation (more
common in later parts of a modern compiler)

Generate target code or interpret on the fly (1-pass
compiler & interpreters; not common in production
compilers — but what we will do for our project)

11/19/2008

] — program .= statement | program statement

statement .= assignStmt | ifStmt
assignsStmt ::= id = expr ;

AS i d e : AS TS G | i75tmt == if (. expr) statement

expr::=1d | int| expr+ expr

: a:=albjcli]jlk]|n]Xx z
Essential Structure Only it 0|| 1I| 2|| ;,J|I4 ||5 ||6 |I7y||8 | 9

program

w— a=1;if (a + 1) b =2

11/19/2008 8

Context-Free Grammars

m Formally, a grammar G is a tuple <N,2,P,S>
where:
N a finite set of non-terminal symbols
2. a finite set of terminal symbols

P a finite set of productions
m Asubsetof Nx (N U 2)*

S the start symbol, a distinguished element of N

m If not specified otherwise, this is usually assumed to be the
non-terminal on the left of the first production

11/19/2008

Standard Notations

ma, b, c elementsof 2

mW, X, Y,z elements of 2*

m A B,C elements of N

mX Y, Z elements of NV 2
mo, 3,y elementsof (NU2)*
mA-sogorA:=aif<A, a>IinP

11/19/2008

10

" I
Derivation Relations (1)

moAy=>afy iff Ax:=BInP
derives

m A =>" w if there is a chain of productions
starting with A that generates w

transitive closure

11/19/2008

11

"
Derivation Relations (2)

mwWAy=> _wpy IffA:=BINP
derives leftmost

moAw=>_ofw iffA:=BINP
derives rightmost

m Parsers normally work with only leftmost
or rightmost derivations — not random
orderings

11/19/2008 12

= S
Languages

mForAinN,L(A)={w|A=>"w}
l.e., set of strings (words, terminal symbols)
generated by nonterminal A

m [f S is the start symbol of grammar G,
define L(G)= L(S)

11/19/2008

13

Reduced Grammars

m Grammar G is reduced iff for every
production A ::= o in G there is some
derivation

S=>*"XAz=>X02z=>"Xyz
l.e., no production is useless

m Convention: we will use only reduced
grammars

11/19/2008

14

] — program .= statement | program statement

statement .= assignStmt | ifStmt
assignsStmt ::= id = expr ;
i1Stmt .= it (expr) stmt
Exam ple expr .= id | int| expr+ expr
id=alb|c|i]ljlk]n]|x]y]z
int::=0]1]12|3]4]5]6|7]8]9

m Top down, Leftmost derivation for: a=1+Db;

11/19/2008 15

" I
Example

m Grammar

11/19/2008

m Top down, leftmost
derivation of. abbcde

16

" S
Ambiguity

m Grammar G is unambiguous iff every win L(G)
has a unique leftmost (or rightmost) derivation

Fact: either unique leftmost or unique rightmost
Implies the other

m A grammar without this property is ambiguous

Note that other grammars that generate the same
language may be unambiguous

m \We need unambiguous grammars for parsing

11/19/2008 17

"
Example: Ambiguous Grammar for
Arithmetic Expressions

expr ;= expr + expr | expr - expr
| expr * expr | expr/expr | Int
int::=011[2|3|4|5]|6|7]|8]9
m Exercise: show that this is ambiguous

How? Show two different leftmost or
rightmost derivations for the same string

Equivalently: show two different parse trees
for the same string

11/19/2008

"
Example (cont)

m Give a leftmost derivation of 2+3*4 and show the
parse tree

11/19/2008 19

" I
Example (cont)

m Give a different leftmost derivation of
2+3"4 and show the parse tree

11/19/2008

20

Another example

m Give two different derivations of 5+6+7

11/19/2008

21

"
What's going on here?

m This grammar has no notion of
precedence or associatively
m Standard solution

Create a non-terminal for each level of
precedence

Isolate the corresponding part of the grammar

Force the parser to recognize higher
precedence subexpressions first

11/19/2008 22

Classic Expression Grammar

expr ;= expr + term | expr — term | term
term ::= term * factor | term / factor | factor
factor ::=int | (expr)
int:=0[1[2|3|4]|5]|6]|7

11/19/2008

23

SN
Check: Derive 2 + 3 * 4

1111111111

Check: Derive 5+6 +7

m Note interaction between left- vs right-recursive rules
and resulting associativity

11/19/2008

25

" I
Check: Derive 5 + (6 + 7)

1111111111

Another Classic Example

m Grammar for conditional statements
stmt ::=if (cond) stmt
| if (cond) stmt else stmt
| assign
Exercise: show that this is ambiguous
= How?

11/19/2008

27

" S gamey=if (cona) stmt

| if (cond) stmt else stmt
| assign

One Derivation

if (cond) if (cond) stmt else stmt

11/19/2008 28

" S gamey=if (cona) stmt

| if (cond) stmt else stmt
| assign

Another Derivation

if (cond) if (cond) stmt else stmt

11/19/2008 29

" I
Solving if Ambiguity

m Fix the grammar to separate if statements
with else from if statements with no else
Done in original Java reference grammar

Adds lots of non-terminals

m Need productions for things like “while statement that

has unmatched if” and “while statement with matched
if”, etc. etc. etc.

m Use some ad-hoc rule in parser
“else matches closest unpaired if”

11/19/2008 30

Parser Tools and Operators

m Most parser tools can cope with
ambiguous grammars

Makes life simpler if used with discipline
m Typically one can specify operator
precedence & associativity

Allows simpler, ambiguous grammar with
fewer nonterminals as basis for generated
parser, without creating problems

11/19/2008

31

"
Parser Tools and Ambiguous
Grammars

m Possible rules for resolving other problems

Earlier productions in the grammar preferred
to later ones

Longest match used if there is a choice

m Parser tools normally allow for this

But be sure that what the tool does is really
what you want

11/19/2008 32

Or...

m |f the parser is hand-written, either fudge
the grammar or the parser or cheat where
it helps.

11/19/2008

33

