
CSE 413 Autumn 2008

Parsing & Context-
Free Grammars

11/19/2008 1

A d f T dAgenda for Today

Parsing overview
Context free grammarsContext free grammars
Ambiguous grammars

211/19/2008

P iParsing

The syntax of most programming languages can
be specified by a context-free grammar (CGF)
Parsing: Given a grammar G and a sentence w
in L(G), traverse the derivation (parse tree) for

i t d d d d d thiw in some standard order and do something
useful at each node

The tree might not be produced explicitly but theThe tree might not be produced explicitly, but the
control flow of a parser corresponds to a traversal

311/19/2008

Old
program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statementGOld

Example
ifStmt :: if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

G

program

program
t t t

statement
statement

ifStmt
statement

assignStmt
expr assignStmt

expr expr id exprid expr

a = 1 ; if (a + 1) b = 2 ;

expr expr

intid

p

int

id expr

int

w a = 1 ; if (a + 1) b = 2 ;

411/19/2008

w

“St d d O d ”“Standard Order”

For practical reasons we want the parser
to be deterministic (no backtracking), and (g),
we want to examine the source program
from left to right.g

(i.e., parse the program in linear time in the
order it appears in the source file)pp)

511/19/2008

C O d iCommon Orderings

Top-down
Start with the root
Traverse the parse tree depth-first, left-to-right
(leftmost derivation)
LL(k)LL(k)

Bottom-up
Start at leaves and build up to the rootStart at leaves and build up to the root

Effectively a rightmost derivation in reverse(!)

LR(k) and subsets (LALR(k), SLR(k), etc.)() (() ())

611/19/2008

“S thi U f l”“Something Useful”

At each point (node) in the traversal, perform
some semantic action

Construct nodes of full parse tree (rare)
Construct abstract syntax tree (common)
C t t li l l l t ti (Construct linear, lower-level representation (more
common in later parts of a modern compiler)
Generate target code or interpret on the fly (1-passGenerate target code or interpret on the fly (1 pass
compiler & interpreters; not common in production
compilers – but what we will do for our project)

711/19/2008

Aside: ASTs
program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statementGAside: ASTs

Essential Structure Only

ifStmt :: if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

G

program

a = 1 ; if (a + 1) b = 2 ;w a = 1 ; if (a + 1) b = 2 ;

811/19/2008

w

C t t F GContext-Free Grammars

Formally, a grammar G is a tuple <N,Σ,P,S>
where:

N a finite set of non-terminal symbols
Σ a finite set of terminal symbols
P fi it t f d tiP a finite set of productions

A subset of N × (N ∪ Σ)*

S the start symbol a distinguished element of NS the start symbol, a distinguished element of N
If not specified otherwise, this is usually assumed to be the
non-terminal on the left of the first production

911/19/2008

St d d N t tiStandard Notations

a, b, c elements of Σ
w x y z elements of Σ*

∪

w, x, y, z elements of Σ
A, B, C elements of N
X Y Z l t f N Σ∪X, Y, Z elements of N Σ
α, β, γ elements of (N Σ)*∪

A α or A ::= α if <A, α> in P

1011/19/2008

D i ti R l ti (1)Derivation Relations (1)

α A γ => α β γ iff A ::= β in P
derivesderives

A =>* w if there is a chain of productions
starting with A that generates wstarting with A that generates w

transitive closure

1111/19/2008

D i ti R l ti (2)Derivation Relations (2)

w A γ =>lm w β γ iff A ::= β in P
derives leftmostderives leftmost

α A w =>rm α β w iff A ::= β in P
derives rightmostderives rightmost

Parsers normally work with only leftmost
or rightmost derivations not randomor rightmost derivations – not random
orderings

1211/19/2008

LLanguages

For A in N, L(A) = { w | A =>* w }
i.e., set of strings (words, terminal symbols)i.e., set of strings (words, terminal symbols)
generated by nonterminal A

If S is the start symbol of grammar G,If S is the start symbol of grammar G,
define L(G) = L(S)

1311/19/2008

R d d GReduced Grammars

Grammar G is reduced iff for every
production A ::= α in G there is some p
derivation

S =>* x A z => x α z =>* xyzS > x A z > x α z > xyz
i.e., no production is useless

Convention: we will use only reducedConvention: we will use only reduced
grammars

1411/19/2008

E l

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmt

Example
ifStmt :: if (expr) stmt
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Top down, Leftmost derivation for: a = 1 + b ;

1511/19/2008

E lExample

Grammar Top down, leftmost
derivation of: abbcde

S ::= aABe
A ::= Abc | b|
B ::= d

1611/19/2008

A bi itAmbiguity

Grammar G is unambiguous iff every w in L(G)
has a unique leftmost (or rightmost) derivation

F t ith i l ft t i i ht tFact: either unique leftmost or unique rightmost
implies the other

A grammar without this property is ambiguousg a a t out t s p ope ty s a b guous
Note that other grammars that generate the same
language may be unambiguous

W d bi f iWe need unambiguous grammars for parsing

1711/19/2008

Example: Ambiguous Grammar forExample: Ambiguous Grammar for
Arithmetic Expressions

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int| p p | p p |

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Exercise: show that this is ambiguousExercise: show that this is ambiguous

How? Show two different leftmost or
rightmost derivations for the same stringrightmost derivations for the same string
Equivalently: show two different parse trees
for the same stringfor the same string

1811/19/2008

E l (t)Example (cont)

Give a leftmost derivation of 2+3*4 and show the
parse tree

1911/19/2008

E l (t)Example (cont)

Give a different leftmost derivation of
2+3*4 and show the parse tree

2011/19/2008

A th lAnother example

Give two different derivations of 5+6+7

2111/19/2008

Wh t’ i h ?What’s going on here?

This grammar has no notion of
precedence or associatively
Standard solution

Create a non-terminal for each level of
precedence
Isolate the corresponding part of the grammar
Force the parser to recognize higher
precedence subexpressions first

2211/19/2008

Cl i E i GClassic Expression Grammar

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor| |
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7| | | | | | |

2311/19/2008

Ch k D i 2 3 * 4Check: Derive 2 + 3 * 4

2411/19/2008

Ch k D i 5 6 7Check: Derive 5 + 6 + 7

Note interaction between left- vs right-recursive rules
and resulting associativity

2511/19/2008

Ch k D i 5 (6 7)Check: Derive 5 + (6 + 7)

2611/19/2008

A th Cl i E lAnother Classic Example

Grammar for conditional statements
stmt ::= if (cond) stmtstmt :: if (cond) stmt

| if (cond) stmt else stmt
| assign| assign

Exercise: show that this is ambiguous
How?How?

2711/19/2008

O D i ti

stmt ::= if (cond) stmt
| if (cond) stmt else stmt
| assign

One Derivation

if (cond) if (cond) stmt else stmt() ()

2811/19/2008

A th D i ti

stmt ::= if (cond) stmt
| if (cond) stmt else stmt
| assign

Another Derivation

if (cond) if (cond) stmt else stmt() ()

2911/19/2008

S l i if A bi itSolving if Ambiguity

Fix the grammar to separate if statements
with else from if statements with no else

Done in original Java reference grammar
Adds lots of non-terminals

Need productions for things like “while statement thatNeed productions for things like while statement that
has unmatched if” and “while statement with matched
if”, etc. etc. etc.

U d h l iUse some ad-hoc rule in parser
“else matches closest unpaired if”

3011/19/2008

P T l d O tParser Tools and Operators

Most parser tools can cope with
ambiguous grammarsg g

Makes life simpler if used with discipline
Typically one can specify operatorTypically one can specify operator
precedence & associativity

Allows simpler ambiguous grammar withAllows simpler, ambiguous grammar with
fewer nonterminals as basis for generated
parser, without creating problemspa se , ou c ea g p ob e s

3111/19/2008

Parser Tools and AmbiguousParser Tools and Ambiguous
Grammars

Possible rules for resolving other problems
Earlier productions in the grammar preferredEarlier productions in the grammar preferred
to later ones
Longest match used if there is a choiceg

Parser tools normally allow for this
But be sure that what the tool does is reallyBut be sure that what the tool does is really
what you want

3211/19/2008

OOr…

If the parser is hand-written, either fudge
the grammar or the parser or cheat where g p
it helps.

3311/19/2008

