Ruby Blocks, Procs,

and Closures

Blocks

m Recall that any method call can have a
trailing block, which can be executed by
the method (almost like a coroutine)

all_words =
words.each { | w | all_words = all words +w +* "}

" A
Block Execution

m A block is executed in the context of the
method call.

Implications: Access to variables at the call
location; return from a block returns from
surrounding method
def search(it, words)
words.each { | w | if it == w return }
puts “not found”
end

" I
yield

m Any method call can include a trailing
block. A method “calls” the block with a
yield statement.

def repeat Output:
yield hello
yield hello
end

repeat { puts “hello” }

yield with arguments

m If the block has parameters, you can
provide expressions with yield to pass

arguments

def xvii
yield 17
end
xvii{| n | puts n+1}

This Is exactly what an iterator does

" A
Blocks and Procs

m Blocks (and methods) are not objects in Ruby
— 1.e., not things that can be passed around

as first-class values
m But we can create a Proc object from a block

Procs are closures consisting of the block and the
surrounding environment

Variations: procs and lambdas; slightly different
behavior

Several different ways to construct these; see the
language documentation for detalls

Making Procs

m [N a method, can have a parameter that

explicitly represents the block

def return_a_block (& block)
block.call(17)
return block

end

The ‘&’ turns the block into a proc object
Proc objects support a call method

Proc.new: lambdas

m Can also create a proc object explicitly
P =Proc.new {| X, y|x+y}

p.call(x,y)
m The kernel's lambda method also creates

proc objects
IS_positive = lambda {|x| x>0}

Procs vs. Lambdas

m A Proc Is a block wrapped in an object —
and behaves just like a block

In particular, a return in a Proc will return from
the surrounding method where the Proc’s
closure was created

m Error if that method has already terminated

m A Lambda is more like a method
Return just exits from the lambda

"
Functional Programming in
Ruby

m Ruby Is definitely not a functional
programming language, but with blocks,
procs, and lambdas, you can do most
anything you could in a functional
language

m For a good discussion, see ch. 6 in The
Ruby Programming Language by
Flanagan and Matsumoto

