
CSE 413 Autumn 2008

Ruby Blocks, Procs,
and Closures

Bl kBlocks

Recall that any method call can have a
trailing block, which can be executed by g , y
the method (almost like a coroutine)

all_words = “”_
words.each { | w | all_words = all_words + w + “ ” }

Bl k E tiBlock Execution

A block is executed in the context of the
method call.

Implications: Access to variables at the call
location; return from a block returns from
surrounding methodsurrounding method

def search(it, words)
words.each { | w | if it == w return }{ | | }
puts “not found”

end

i ldyield

Any method call can include a trailing
block. A method “calls” the block with a
yield statement.

def repeat Output:p p
yield hello
yield hello

end
repeat { puts “hello” }

i ld ith tyield with arguments

If the block has parameters, you can
provide expressions with yield to pass p p y p
arguments

def xvii
yield 17

end
xvii { | n | puts n+1 }

This is exactly what an iterator does

Bl k d PBlocks and Procs

Blocks (and methods) are not objects in Ruby
– i.e., not things that can be passed around
as first-class valuesas first-class values
But we can create a Proc object from a block

Procs are closures consisting of the block and the g
surrounding environment
Variations: procs and lambdas; slightly different
behaviorbehavior
Several different ways to construct these; see the
language documentation for details

M ki PMaking Procs

In a method, can have a parameter that
explicitly represents the blockp y p

def return_a_block (& block)
block.call(17)
return block

end
The ‘&’ turns the block into a proc object
Proc objects support a call method

P l bdProc.new; lambdas

Can also create a proc object explicitly
p = Proc.new { | x, y | x+y }p { | y | y }
…
p.call(x,y)

The kernel’s lambda method also creates
proc objectsj

is_positive = lambda {|x| x > 0 }

P L bdProcs vs. Lambdas

A Proc is a block wrapped in an object –
and behaves just like a blockj

In particular, a return in a Proc will return from
the surrounding method where the Proc’sg
closure was created

Error if that method has already terminated

A Lambda is more like a method
Return just exits from the lambdaj

Functional Programming inFunctional Programming in
Ruby

Ruby is definitely not a functional
programming language, but with blocks,
procs, and lambdas, you can do most
anything you could in a functional
lang agelanguage
For a good discussion, see ch. 6 in The
Ruby Programming Language byRuby Programming Language by
Flanagan and Matsumoto

