
Interfaces, Mixins, &

Multiple Inheritance

CSE 413 Spring 2011

Based on CSE341, Sp08/Sp11

Overview

 Essence of object-oriented programming:

inheritance, overriding, dynamic-dispatch

 Classic inheritance includes specification

(types) and implementation (code)

 What about multiple inheritance

(>1 superclass)?

When does it make sense?

What are the issues?

Inheritance Models

 Single Inheritance: at most 1 superclass

Subclass inherits methods and state from
superclass; can override methods, add more
methods and instance variables

 Multiple Inheritance: >1 superclass

Useful – factor different traits/behavior to
small classes, then extend several of them

But hard to use well (e.g., C++)
 Typical problem: big, brittle inheritance graph,

methods migrate to bloated superclasses over
time; becomes (very) hard to make changes

Inheritance Models

 Java-style interfaces: >1 type

Doesn’t apply to dynamically-typed languages

Class “inherits” (has) multiple types, but

Only inherits code from one parent class

Fewer problems than multiple inheritance

 Mixins: >1 “source of methods”

Similarities to multiple inheritance – many of
the goodies with fewer(?) problems

Multiple Inheritance

 If single inheritance is so useful, why not
allow multiple superclasses?

Semantic and implementation complexities

Typing issues w/static typing

 Is it useful? Sure:

Color3DPoint extends 3DPoint, ColorPoint

 Naïve view: subclass has all fields and
methods of all superclasses

Trees, DAGs, and Diamonds

 Class hierarchy forms a graph
Edges from subclasses to superclasses

Single inheritance: a tree

Multiple inheritance: a DAG

 Diamonds
With multiple inheritance, may be multiple ways

to show that A is a (transitive) subclass of B

 If all classes are transitive subclasses of e.g.
Object, multiple inheritance always leads to
diamonds

Multiple Inheritance:

Semantic Issues
 What if multiple superclasses define the same

message m or field f ?

 Classic example: Artists, Cowboys, ArtistCowboys

 Options for method m:

 Reject subclass as ambiguous – but this is too
restrictive (esp. w/diamonds)

 “Left-most superclass wins” – too restrictive (want
per-method flexibility) + silent weirdness

 Require subclass to override m (can use explicitly
qualified calls to inherited methods)

Multiple Inheritance:

Semantic Issues

 Options for field f : One copy of f or multiple
copies?

Multiple copies: what you want if Artist::draw and
Cowboy::draw use inherited fields differently

Single copy: what you want for Color3dPoint
x and y coordinates

 C++ provides both kinds of inheritance

Either two copies always, or one copy if field
declared in same (parent) class

Java-Style Interfaces

 In Java we can define interfaces and

classes can implement them

 Interface describes methods and types

 Interface is a type – can have variables,

parameters, etc. with that type

 If class C implements interface I, then

instances of C have type I but must define

everything in I (directly or via inheritance)

Interfaces are all about Types

 In Java, we can have 1 immediate superclass
and implement any number of interfaces

 Interfaces provide no methods or fields – no
duplication problems
 If I1 and I2 both include some method m,

implementing class must provide it somehow

 But this doesn’t allow what we want for
Color3DPoints or ArtistCowboys
No code inheritance/reuse possible

Java Interfaces and Ruby

 Concept is totally irrelevant for Ruby

We can already send any message to any

object (dynamic typing)

We need to get it right (can always ask an

object what messages it responds to)

Interfaces vs Abstract Classes

 Interfaces are not needed in C++. Why?

 C++ allows methods and classes to be abstract
 Specified in class declaration but not provided in

implementation (same as Java)

 Called pure virtual methods in C++

 So a class can extend multiple abstract classes
 Same as implementing interfaces

 But if that’s all you need, you don’t need multiple
inheritance
 Multiple inheritance is not just typing

Mixins

 A mixin is a collection of methods

 No fields, constructors, instances, etc.

 Typically a language with mixins allows 1
superclass and any number of mixins

 We’ve seen this in Ruby

 Bad news: less powerful than multiple inheritance
(what is in a class, what is in a mixin?)

 Good news: Clear semantics, great for certain
idioms (Enumerate, Comparable using each, <=>)

