Interfaces, Mixins, &

Multiple Inheritance

Based on CSE341, Sp08/Spll



Overview

m Essence of object-oriented programming:
Inheritance, overriding, dynamic-dispatch

m Classic inheritance includes specification
(types) and implementation (code)

m \WWhat about multiple inheritance
(>1 superclass)?

When does it make sense?
What are the issues?



Inheritance Models

m Single Inheritance: at most 1 superclass
Subclass inherits methods and state from

superc
methoo

ass: can override methods, add more
s and Instance variables

m Multiple

nheritance: >1 superclass

Useful — factor different traits/behavior to
small classes, then extend several of them
But hard to use well (e.g., C++)

m Typical problem: big, brittle inheritance graph,
methods migrate to bloated superclasses over

time;

becomes (very) hard to make changes



" A
Inheritance Models

m Java-style interfaces: >1 type
Doesn’t apply to dynamically-typed languages
Class “inherits” (has) multiple types, but
Only inherits code from one parent class
Fewer problems than multiple inheritance

m Mixins: >1 “source of methods”

Similarities to multiple inheritance — many of
the goodies with fewer(?) problems



" J
Multiple Inheritance

m If single inheritance Is so useful, why not
allow multiple superclasses?

Semantic and implementation complexities
Typing issues wi/static typing

m s it useful? Sure:
Color3DPoint extends 3DPoint, ColorPoint

m Naive view: subclass has all fields and
methods of all superclasses



" A
Trees, DAGSs, and Diamonds

m Class hierarchy forms a graph
Edges from subclasses to superclasses
Single inheritance: a tree
Multiple inheritance: a DAG

m Diamonds

With multiple inheritance, may be multiple ways
to show that A Is a (transitive) subclass of B

If all classes are transitive subclasses of e.g.

Object, multiple inheritance always leads to
diamonds



" A
Multiple Inheritance:
Semantic Issues

m What if multiple superclasses define the same
message m or field f ?
Classic example: Artists, Cowboys, ArtistCowboys

m Options for method m:

Reject subclass as ambiguous — but this is too
restrictive (esp. w/diamonds)

“Left-most superclass wins” — too restrictive (want
per-method flexibility) + silent weirdness

Require subclass to override m (can use explicitly
gualified calls to inherited methods)



" A
Multiple Inheritance:
Semantic Issues

m Options for field f : One copy of f or multiple
copies”?
Multiple copies: what you want if Artist::draw and
Cowboy::draw use inherited fields differently

Single copy: what you want for Color3dPoint
X and y coordinates
m C++ provides both kinds of inheritance

Either two copies always, or one copy If field
declared in same (parent) class



Java-Style Interfaces

m In Java we can define interfaces and
classes can implement them
nterface describes methods and types

nterface is a type — can have variables,
parameters, etc. with that type

f class C implements interface I, then
Instances of C have type | but must define
everything in | (directly or via inheritance)




" J
Interfaces are all about Types

m In Java, we can have 1 immediate superclass
and implement any number of interfaces

m Interfaces provide no methods or fields — no

duplication problems

If 11 and 12 both include some method m,
Implementing class must provide it somehow

m But this doesn'’t allow what we want for
Color3DPoints or ArtistCowboys

No code inheritance/reuse possible



" J
Java Interfaces and Ruby

m Concept is totally irrelevant for Ruby

We can already send any message to any
object (dynamic typing)

We need to get it right (can always ask an
object what messages it responds to)



" A
Interfaces vs Abstract Classes

m [nterfaces are not needed in C++. Why?

m C++ allows methods and classes to be abstract

Specified in class declaration but not provided in
Implementation (same as Java)

Called pure virtual methods in C++
m SO a class can extend multiple abstract classes
Same as implementing interfaces

m But if that's all you need, you don’t need multiple
Inheritance

Multiple inheritance is not just typing



BN
MIXINS

m A mixin IS a collection of methods
No fields, constructors, instances, etc.

m Typically a language with mixins allows 1
superclass and any number of mixins

We've seen this in Ruby

m Bad news: less powerful than multiple inheritance
(what is Iin a class, what is in a mixin?)

m Good news: Clear semantics, great for certain
idioms (Enumerate, Comparable using each, <=>)



