CSE 413: Programming Languages
and their Implementation

Hal Perkins
Autumn 2014

CSE 413 14au - Introduction



Today s Outline

e Administrative info

 Overview of the course
e Introduction to Seheme Racket

CSE 413 14au - Introduction



Registration

 Please sign up on info sheet at end of class
you’re still trying to get in

 We’ll see what we can do, but no promises
(depends on how many requests there are,
resources available, etc.)

CSE 413 14au - Introduction



Who, Where & When

* Instructor
» Hal Perkins (perkins(@cs.washington.edu)

* Teaching Assistants

» James Barnes, Gurwinder Gulati, Gene Kim,
Soumya Vasisht

» Office hours & locations tba, etc.
* Fill out the doodle on the course web
e Lectures
» MWF 11:30-12:20, MOR 220

CSE 413 14au - Introduction



Web Page

e All info 1s on the CSE 413 web:

http://www.cs.washington.edu/413

e Look there for schedules, contact information,
assignments, links to discussion boards and
mailing lists, etc.

CSE 413 14au - Introduction



CSE 413 E-mail List

 If you are registered for the course you are
automatically added.

* E-mail list 1s used for posting important
announcements by instructor and TAs

* You are responsible for anything sent here

» Mail to this list 1s sent to your UW email address

CSE 413 14au - Introduction



CSE 413 Discussion Board

* Use the Catalyst GoPost message board to stay
in touch outside of class

» Staff will watch and contribute too
» (General discussion of class contents

» Hints and ideas about assignments (but not
detailed code or solutions)

» Other topics related to the course

* To-Do: post or reply to the intro message and
it will track unread postings for you! (Do 1t!!)

CSE 413 14au - Introduction



Course Computing

» All software 1s freely available and can be
installed anywhere you want

» Links on the course web

* Also should be installed 1n the College of Arts
& Sciences Instructional Computing Lab

CSE 413 14au - Introduction



Grading: Estimated Breakdown

* Approximate Grading:
» Homework + Projects: 55%

» Midterm: 15% (1n class, tent. 11/02)
» Final: 25% (Wed. Dec 10, 2:30 pm)
» Other 5%

* Assignments:

» Weights will differ depending on difficulty

» Assignments will be a mix of shorter written exercises
and shorter/longer programming projects

CSE 413 14au - Introduction



Deadlines & Late Policy

» Assignments generally due Thursday evenings
via the web

» Exact times and dates given for each assignment

» Late policy: 4 late days per person

» At most 2 on any single assignment

» Used only 1n integer units

»

»

If we have any group work, both students must
have late days to use and both are charged if used

Don’ t burn them up early!!

CSE 413 14au - Introduction



Academic (Mis-)Conduct

You are expected to do your own work
» Exceptions (group work), if any, will be clearly announced

Things that are academic misconduct:

» Sharing solutions, doing work for others, or accepting
work from others

» Copying solutions on the web
» Consulting solutions from previous offerings of this course

» etc. Will not attempt to provide exact legislation and invite
attempts to weasel around the rules

Integrity 1s a fundamental principle in the academic
world (and elsewhere) — we and your classmates trust
you; don t abuse that trust

CSE 413 14au - Introduction



Reading

* No required $$$ textbook
 (Good resources on the web

 Follow “Functional Programming/Racket” link:
» Racket documentation (Guide has language details)

» How to Design Programs Intro textbook using
Scheme

» Structure and Interpretation of Computer Programs

« Fantastic, classic intro CS book from MIT. Some good
examples here that are directly useful

CSE 413 14au - Introduction



Weel
Wee
Weel
Weel

Tentative Course Schedule

< 1:]
K 2]
K 3: ]

Functional
unctional

Functional

K 4: ]

Wee

Programming/!
Programming/]

Rac]
Rac

Programming/|

FP wrapup/intro to Ruby

Rac

Ket
ket

Ket

ks 5-6: Object-oriented programming and
Ruby; scripting languages

Weeks 7-9: Language implementation, compilers
and interpreters

Week 10: garbage collection; special topics

CSE 413 14au - Introduction



Work to do!

Download Racket and install

Run DrRacket and verity facts like 1+1=2

Post or reply on discussion board so 1t will
track unread articles for you

Fill out office hour doodle

CSE 413 14au - Introduction

14



Now where were we?

* Programming Languages

* Language Implementation

CSE 413 14au - Introduction



Why Functional Programming?

Focus on “functional programming~ because of
simplicity, power, elegance
Stretch our brains — different ways of thinking about
programming and computation

» Often a good way to think even if stuck with C/Fortran/...

Now mainstream — lambdas/closures 1n Javascript, C#,
Java §; f.p. idioms in C++11; F# standard in Visual
Studio, functional programming 1s the “secret sauce™ 1n
Google’s infrastructure; etc., etc.
Let go of Java/C/... for now

» Easier to approach functional prog. on its own terms

» We’ll make connections to other languages as we go
CSE 413 14au - Introduction



Scheme / Racket

* Scheme: The classic functional language

» Enormously influential in education, research

 Racket

» Modern Scheme dialect with some changes/extras

» DrRacket programming environment (was DrScheme
for many years)

* Expect your instructor to say “Scheme” a bunch

CSE 413 14au - Introduction

17



Functional Programming

Programming consists of defining and evaluating
functions

No side effects (assignment)

» An expression will always yield the same value when
evaluated (referential transparency)

No loops (use recursion instead)

Racket/Scheme/Lisp include assignment and
loops but they are not needed and we won’t use

» 1.€., you will “lose points™

CSE 413 14au - Introduction



Primitive Expressions

* constants
» Integer
» rational
» real

» boolean

e variable names (symbols)

» Names can contain almost any character except
white space and parentheses

» Stick with simple names like value, x, 1ter, ...

CSE 413 14au - Introduction



Compound Expressions

* Either a combination or a special form

* 1. Combination: (operator operand operand ...

» there are quite a few pre-defined operators

» We can define our own operators

* 2. Special form
» keywords in the language
» eg, define, 1f, cond

CSE 413 14au - Introduction



Combinations

(operator operand operand ...)

* this 1s prefix notation, the operator comes first

* a combination always denotes a procedure
application

* the operator 1s a symbol or an expression, the
applied procedure 1s the associated value
» +, -, abs, my-function

» characters like * and + are not special; if they do not
stand alone then they are part of some name

CSE 413 14au - Introduction



Evaluating Combinations

* To evaluate a combination
» Evaluate the subexpressions of the combination

» Apply the procedure that 1s the value of the

leftmost subexpression (the operator) to the
arguments that are the values of the other
subexpresions (the operands)

* Examples (demo)

CSE 413 14au - Introduction



Evaluating Special Forms

* Special forms have unique evaluation rules

* (define x 3) 1s an example of a special form; it 1s
not a combination

» the evaluation rule for a simple define is "associate the
given name with the given value”

» All special forms do something different from simple
evaluation of a value from (evaluated) operands

* There are a few more special forms, but there are
surprisingly few compared to other languages

CSE 413 14au - Introduction



Procedures

CSE 413 14au - Introduction

24



Recall the define special form

* Special forms have unique evaluation rules

 (define x 3) 1s an example of a special form; 1t
1s not a combination

» the evaluation rule for a simple define 1s "associate
the given name with the given value"

CSE 413 14au - Introduction



Define and name a variable

(define (name) (expr))
» define - special form
» name - name that the value of expr 1s bound to

» expr - expression that 1s evaluated to give the
value for name

 define is valid only at the top level of a
<program> and at the beginning of a <body>

CSE 413 14au - Introduction



Define and name a procedure

(define ((name) (formal params)) (body))

» define - special form
» name - the name that the procedure 1s bound to

» formal parameters - names used within the body of
procedure, bound when procedure 1s called

» body - expression (or sequence of expressions)

that will be evaluated when the procedure 1s
called.

» The result of the last expression in the body will
be returned as the result of the procedure call

CSE 413 14au - Introduction



Example definitions

(define p1 3.1415926535)

(define (area-of-disk r)
(* p1 (* r1)))

(define (area-of-ring outer inner)
(- (area-of-disk outer)
(area-of-disk 1nner)))

CSE 413 14au - Introduction



Defined procedures are "first class"

* Compound procedures that we define are used
exactly the same way the primitive procedures
provided in Scheme are used

» names of built-in procedures are not special; they are
simply names that have been pre-defined

» you can't tell whether a name stands for a primitive
(built-in) procedure or a compound (defined)
procedure by looking at the name or how it 1s used

» [Disclaimer: This 1s not always strictly true in Racket.]

CSE 413 14au - Introduction



Booleans

* Recall that one type of data object 1s boolean
» #t (true) or #f (false)

* We can use these explicitly or by calculating
them 1n expressions that yield boolean values

* An expression that yields a true or false value
1s called a predicate
» H#Ht=>
» (<55 =
» >p10)=>

CSE 413 14au - Introduction



Conditional expressions

* Asn all languages, we need to be able to
make decisions based on values and do
something depending on the result

CSE 413 14au - Introduction



Special form: cond

(cond (clausel) {clause2) ... {clausen))

* each clause 1s of the form
» ((predicate) (expression))

* the last clause can be of the form

» (else (expression))

CSE 413 14au - Introduction



Example: sign.scm

; return the sign of x as -1, 0, or 1

(define (sign x)
(cond
((<x0)-1)
(=x0)0)
(>x0)+1)))

CSE 413 14au - Introduction



Special form: 1f

(if (predicate) (consequent) (alternate))

(if (predicate) (consequent) )

CSE 413 14au - Introduction



Logical composition

(and {el) (e2)... (en))
(or {el) (e2)... {en))
(not {e))

* Scheme interprets the expressions e1 one at a
time 1n left-to-right order until it determines
the correct value

CSE 413 14au - Introduction



In-range.scm
: true 1f val 1s lo <= val <= hi
(define (in-range lo val hi)

(and (<= lo val)
(<= val hi1)))

CSE 413 14au - Introduction



