
'

&

$

%

CSE 413
Programming Languages & Implementation

Hal Perkins

Autumn 2014

Delayed Evaluation, Thunks, Streams, Memoization

Hal Perkins CSE 413 Autumn 2014 1



'

&

$

%

Today

• Racket top-level: forward references and evil mutation

• cons and mutable mcons cells

• Delaying evaluation: Function bodies evaluated only at application

• Key idioms of delaying evaluation

– Conditionals

– Laziness

– Streams

– Memoization

• In general, evaluation rules defined by language semantics

– Some languages have “lazy” function application!

Hal Perkins CSE 413 Autumn 2014 2



'

&

$

%

Top-level definitions

Racket top-level allows forward references and mutation of bindings

• Racket (and Scheme) do have assignment: (set! x e)

– But used only when really! appropriate!!

• What should a name clash do? (In fact, it’s mutation.)

• How can you program defensively?

– General point: Make a local copy!

• What do Racketers do in practice?

– Don’t mutate top-level bindings

– Use a module system for namespace management

Hal Perkins CSE 413 Autumn 2014 3



'

&

$

%

cons and mcons

• cons just makes a pair

– By convention and standard library, lists are nested pairs that

eventually end with null

• In Racket, cons cells are immutable (several good reasons for this)

• mcons cells are mutable — mutable pairs are sometimes useful

– Racket has a parallel universe of functions for these: mcons,

mcar, mcdr, mpair? (also mlist and more if you put

(require racket/mpair) at the top of your code)

– Can mutate the car and cdr of a mcons cell with set-mcar!

and set-mcdr!

Hal Perkins CSE 413 Autumn 2014 4



'

&

$

%

Delayed Evaluation

For each language construct, there are rules governing when

subexpressions get evaluated. In Racket, Java, and most conventional

languages:

• function arguments are “eager” (call-by-value)

• conditional branches are not

We could define a language in which function arguments were not

evaluated before call, but instead at each use of argument in body.

(call-by-name)

• Sometimes faster: (lambda (x) 3)

• Sometimes slower: (lambda (x) (+ x x))

• Equivalent only if function arguments have no side effects and

terminate when evaluated

Hal Perkins CSE 413 Autumn 2014 5



'

&

$

%

Thunks

We know how to delay evaluation: put expressions in a function!

• Behave just the same thanks to closures

• Call the function when you need the value

A “thunk” is just a function taking no arguments, which works great

for delaying evaluation.

• Can be verbed: thunk the expression

Example: Can’t define if with eager evaluation, but can with thunks.

Hal Perkins CSE 413 Autumn 2014 6



'

&

$

%

Best of both worlds?

The “lazy” (call-by-need) rule: Evaluate the argument, the first time

it’s used. Save answer for subsequent uses.

• Asymptotically it’s the best

• But behind-the-scenes bookkeeping can be costly

• And it’s hard to reason about with effects

– Typically used in (sub)languages without effects

• Nonetheless, a key idiom with syntactic support in Racket

– Which we reimplemented with force-eval and delay-eval

– And related to memoization

Hal Perkins CSE 413 Autumn 2014 7



'

&

$

%

Streams

• A stream is an “infinite” list — you can ask for the rest of it as

many times as you like and you’ll never get null.

• The universe is finite, so a stream must really be an object that

acts like an infinite list.

• The idea: use a function to describe what comes next.

Note: Deep connection to sequential feedback circuits

• One new value on each clock cycle

Note: Connection to UNIX pipes

• cmd1 | cmd2 has cmd2 “pull” data from cmd1.

Hal Perkins CSE 413 Autumn 2014 8



'

&

$

%

Streams in Racket

A pretty straightforward idiom:

• A stream is a thunk that when called returns a pair:

(next-answer . next-thunk)

• So “going another iteration with result pr” is ((cdr pr))

• One thunk creating another thunk: use recursion

• Nice division of labor:

– stream-creator knows how to generate values

– stream-client knows how many are needed and what to do with

each

• (No new semantics; just new idiom)

Hal Perkins CSE 413 Autumn 2014 9



'

&

$

%

Using Streams

Given a stream st, the client can get any number of elements

• First: (car (st))

• Second: (car ((cdr (st))))

• Third: (car ((cdr ((cdr (st))))))

(Usually bind (cdr st()) to a variable or pass it to a recursive

function)

Hal Perkins CSE 413 Autumn 2014 10



'

&

$

%

Memoization

A “cache” of previous results is equivalent if results cannot change.

• Could be slower: cache too big or computation too cheap

• Could be faster: just a lookup

• In our fibonacci example it turns an exponential algorithm into a

linear algorithm

An association list is not the fastest data structure for large memo

tables, but works fine for 413.

Question: Why does assoc return the pair?

Hal Perkins CSE 413 Autumn 2014 11


