CSE 413 14au Memory management/Garbage Collection Notes
Memory categories / lifetimes

¢ Static - created when program loaded, lifetime is execution

* Automatic - created on function call, lifetime is function activation (typically
stack allocated since function calls are LIFO, but need to modify if closures
can capture pointers to local environments)

* Dynamic - created on demand, lifetime until no longer needed (heap)

Manual memory management: malloc/free; new/delete

* Tight control over memory
* Error prone - who is responsible for freeing what
o Memory leaks - storage allocated but not released when done
o Dangling pointers - storage is released, but existing pointer to that
address reused later

Automatic strategies
Reference counting

* Idea: associate a count with each piece of dynamic data: how many pointers
(references) exist pointing to this data
o Increment when new pointer value is created
o Decrement when pointer changed or deleted
= Ifreference count decremented to 0, delete object
* Example: manipulating reference counts on p=q assignment
* Pros: fairly simple to implement; precise discovery of when an object is free
* Cons:
o Expensive relative to cheap pointer operations
o Failsin the presence of cycles
= Partial workaround: weak pointers/references. Requires
programming discipline to avoid accidental deallocations or
memory leaks
* But useful for resource allocation like file systems where overhead is low
compared to other operations and guarantee of no cycles

Automatic garbage collection

* Basicidea

o Mark all memory that is currently in use

o Reclaim all memory previously allocated that is no longer in use
* Key concept: reachable data:

o Root set: all known static (global) and dynamic (local) variables.
Everything they point to is reachable

o Closure: if an object is referenced by some reachable object then it too
is reachable

Classic mark/sweep garbage collection

* Associate a “mark bit” with each heap object
* When each new object is allocated (new, cons, etc.) ensure mark bit is 0.

Mark/sweep GC pseudo code
Precondition: all mark bits on all heap objects are 0

Initialize worklist to empty. Every item on the worklist is an object that (a) is
reachable and has its mark bit set to 1 and (b) has not been examined to see what
other objects it references

Gc() = mark_heap(); sweep();

mark_heap() = // punted - would need to check null ptrs in real impl., etc.
for each variable r in the root set
obj =*r
if mark_bit(obj) =0
mark_bit(obj) =1
add obj to worklist
while worklist is not empty
remove next object p from worklist
for each reference variable r in p
obj =*r
if mark_bit(obj) =0
mark_bit(obj) =1
add obj to worklist
sweep() =
for each heap object
if mark bit is 0 then free object (add to free list)
else set mark bit to 0

postcondition: all unused heap objects have been freed and all mark bits are 0
example: show gc after

(define x ‘(a b)) (define n (length (append x x))) (define y (cons ‘c x))

Variations - lots
Compacting/copying collectors: idea:

* divide heap into two halves old and new
* Allocate objects out of old
* When old is used up, copy all reachable (live objects) to new
o Need to put forwarding pointers in place from old objects to new
copies, and update all discovered pointers to point to new copies
* After all live objects copied, swap old and new - previous old is now free
space to be used on next collection

Advantages

* Heap allocation is simple - no free list needed, just keep a “next free” pointer
in half where objects are being allocated

* Keeps live heap objects contiguous over time; avoids heap fragmentation and
minimizes number of live pages

Generational collectors

* Idea: most program allocate lots of short-lived objects, so

* Biggest payoff is normally to GC only portion of memory with recently
allocated objects

* Divide heap into small part for new objects - the “nursery” - and larger part
for long-lived objects. GC nursery frequently, entire heap rarely. If a new
object survives several GCs in the nursery, promote it to the longer-lived part
of the heap

Concurrent collectors

* “Stop the world” isn’t a great strategy for interactive or real-time
computation. Want to allow GC and program (“mutator”) to run
concurrently, often with GC running in background cleaning up memory
when time is available.

* But: much more complex, bug prone, etc.

Real world: industrial-strength GCs these days use a mix of various strategies,
particularly generational and concurrent collectors.

