
CSE	413	Midterm,	Nov.	7,	2016	 Page	1	of	8	

CSE	413	Midterm	Exam	
	

November	7,	2016	
	

Name	______________________________________	
	
	

The	exam	is	closed	book,	closed	notes,	no	electronic	devices,	signal	flags,	tin-can	telephones,	smoke	
signals,	telepathy,	tattoos,	implants,	or	other	signaling	or	communications	apparatus.	
	
Style	and	indenting	matter,	within	limits.		We’re	not	overly	picky	about	details	like	an	extra	or	a	missing	
parenthesis,	but	we	do	need	to	be	able	to	follow	your	code	and	understand	it.	
	
If	you	have	questions	during	the	exam,	raise	your	hand	and	someone	will	come	to	you.		Don’t	leave	your	
seat.	
	
Please	wait	to	turn	the	page	until	everyone	has	their	exam	and	you	have	been	told	to	begin.	
	
Advice:		The	solutions	to	several	of	the	problems	are	quite	short.		Don’t	be	alarmed	if	there	is	a	lot	more	
room	on	the	page	than	you	actually	need	for	your	answer.	
	
More	gratuitous	advice:	Be	sure	to	get	to	all	the	questions.		If	you	find	you	are	spending	a	lot	of	time	on	
a	question,	move	on	and	try	other	ones,	then	come	back	to	the	question	that	was	taking	the	time.	

	
	

1	 /	20	

2	 /	18	

3	 /	9	

4	 /	9	

5	 /	18	

6	 /	16	

7	 /	10	

Total	 /	100	

CSE	413	Midterm,	Nov.	7,	2016	 Page	2	of	8	

Question	1.	(20	points)		Suppose	we	have	the	following	definitions	in	a	Racket	program:	
	
(define a '(a (b c) d))
(define b (cons 'x (cadr a)))
(define c (list (cddr a) '(p q)))

	
(a)	(14	points)	Draw	a	diagram	showing	the	combined	results	of	evaluating	these	definitions	together	in	
the	given	order	in	a	newly	reset	Racket	environment.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(b)	(6	points)	What	are	the	values	displayed	if	a,	b,	and	c	are	printed	by	Racket?	
	
a:

b:

c:
	 	

CSE	413	Midterm,	Nov.	7,	2016	 Page	3	of	8	

Question	2.		(18	points)		(programming)		Write	a	Racket	function	sum	that	returns	the	sum	of	all	of	the	
numbers	in	its	argument,	ignoring	any	non-numeric	data	that	is	encountered.		The	argument	may	have	
an	arbitrary	number	of	sub-lists,	cons	cells,	and	data	with	other,	non-numeric	types.		Your	solution	does	
not	need	to	be	tail-recursive.		You	may	define	additional	helper	functions	at	top-level	if	you	need	them.		
Examples:	

(sum '(1 2.5 3)) => 6.5
(sum '(1 (cons 2 3) "hello" (list "bye" '(false '()) ((4))))) => 10
(sum "thing") => 0
(sum '("no" nil ("numbers") "here" true)) => 0

Hint:	Racket	has	several	predicate	functions	you	might	find	useful	including	boolean? number?
pair? list? null?

(define (sum x)

 ;; write your code below

)

CSE	413	Midterm,	Nov.	7,	2016	 Page	4	of	8	

Question	3.		(9	points,	3	each)		Scope	and	bindings.		Suppose	we	have	the	following	definitions	in	a	
Racket	program.	

(define x 8)
(define y 2)

(define (f1 x)
 (let ([x (+ x y)]
 [y (* x y)])
 (cons x y)))

(define (f2 x)
 (let* ([x (+ x y)]
 [y (* x y)])
 (cons x y)))

(define (f3 x)
 (letrec ([x (+ x y)]
 [y (* x y)])
 (cons x y)))

For	each	of	the	following	expressions,	if	the	function	call	executes	successfully,	write	down	the	value	
that	is	the	result	of	the	call.		If	evaluation	fails	because	of	some	sort	of	error(s),	give	a	brief	description	
of	the	error(s).		There	are	no	syntactic	errors	(e.g.,	mismatched	parentheses,	etc.)	in	the	code	–	if	there	
are	errors	it	is	because	of	something	that	is	incorrect	during	evaluation.	

(a)			(f1 4)	

	

	

(b)		(f2 4)	

	

	

(c)		(f3 4)	

	

	

	

	

CSE	413	Midterm,	Nov.	7,	2016	 Page	5	of	8	

Question	4.	(9	points,	3	each)	As	we’ve	seen,	sometimes	there	are	several	different	ways	to	write	a	
function	that	differ	in	the	amount	of	execution	space	or	time	needed	to	compute	the	same	value.		For	
example,	we	saw	that	a	tail-recursive	version	of	factorial	could	compute	n!	in	constant	space	compared	
to	a	simple	recursive	version	that	required	space	proportional	to	O(n).			
	
Each	of	the	following	three	functions	computes	the	same	result	given	the	same	argument	value.		For	
each	function,	decide	whether	a	straight-forward	implementation	can	compute	the	result	in	a	constant	
amount	of	space	or	whether	it	requires	space	that	varies	depending	on	the	argument	value.		Circle	“yes”	
or	“no”	below	each	function	definition	to	indicate	your	answer.	(All	three	functions	are	proper	Racket	
functions	that	can	be	executed.)	
	
Hint:	These	functions	can	take	a	long	time	to	execute,	even	for	small	argument	values.		Instead	of	doing	
an	exhaustive	trace,	it	may	be	more	productive	to	look	carefully	at	the	structure	of	the	code.	
	
(a)		
	
(define (mystery1 x)
 (let ([mod2 (modulo x 2)])
 (+ 1 (cond
 [(eq? x 1) 0]
 [(eq? mod2 0) (mystery1 (/ x 2))]
 [(eq? mod2 1) (mystery1 (+ (* x 5) 1))]))))
	
Constant	space?			 Yes				 No	
	
(b)	
	
(define (mystery2 x)
 (let ([mod2 (modulo x 2)])
 (cond
 [(eq? x 1) 1]
 [(eq? mod2 0) (+ 1 (mystery2 (/ x 2)))]
 [(eq? mod2 1) (+ 1 (mystery2 (+ (* x 5) 1)))])))
	
Constant	space?			 Yes				 No	
	
(c)	
	
(define (mystery3 x)
 (letrec ([fun (lambda (x arg)
 (let ([mod2 (modulo x 2)])
 (cond
 [(eq? x 1) arg]
 [(eq? mod2 0) (fun (/ x 2) (+ 1 arg))]
 [(eq? mod2 1) (fun (+ (* x 5) 1)
 (+ 1 arg))])))])
 (fun x 1)))	
	
Constant	space?			 Yes				 No	 	

CSE	413	Midterm,	Nov.	7,	2016	 Page	6	of	8	

Question	5.		(18	points)		Streams.	Recall	that	we	can	implement	a	stream	in	Racket	as	a	thunk	(a	0-
argument	function)	that,	when	called,	returns	a	pair	whose	car	is	the	current	item	in	the	stream	and	
whose	cdr	is	a	stream	(thunk)	that	will	return	the	next	element	of	the	stream	when	used	appropriately.	

Write	a	Racket	function	pair-stream	whose	argument	is	a	stream	s	and	whose	result	is	a	stream	of	
pairs	from	the	original	stream	s.			For	example,	suppose	the	original	stream	is	the	nats	stream	from	
lecture	that	produces	the	stream	of	values	1,	2,	3,	4,	5,	6,	…	.		The	result	of	(pair-stream nats)	
should	be	a	stream	whose	values	are	the	pairs	(1	.	2),	(2	.	3),	(3	.	4),	etc.		In	other	words	the	ith	value	in	
the	stream	produced	by(pair-stream s)	is	the	cons	pair	(x	.	y)	where	x	is	element	i	from	the	
original	stream	s	and	y	is	element	i+1.		Of	course,	the	stream	function	itself	will	return	a	pair	that	
contains	this	pair	value	(the	data)	plus	a	thunk	to	produce	the	next	value-thunk	pair.	

(define (pair-stream s)
 ;; write your solution here

)
	
	
	
	 	

CSE	413	Midterm,	Nov.	7,	2016	 Page	7	of	8	

Question	6.		(16	points)	Function	composition	and	pictures!		The	following	function	has	two	functions	f	
and	g	as	parameters	and	returns	a	new	function	that	applies	g	to	its	argument	and	then	applies	f	to	the	
result	of	g	(i.e.,	it	composes	the	two	functions	f	and	g	into	a	single	function):	

(define (compose f g)
 (lambda (x) (f (g x))))

Now	suppose	we	have	the	following	additional	definitions	and	code	in	our	program:	

(define y 1)
(define fun
 (let ([b 3])(compose (lambda (a) (* a b))
 (lambda (x) (+ x y)))))
(fun 2)

(a)	(14	points)	Draw	a	diagram	showing	the	environments,	bindings,	and	closures	that	exist	when	x	has	
been	bound	to	2	at	the	beginning	of	evaluating	(fun 2),	i.e.,	right	before	evaluating	the	body	of	the	
closure	expression	that	is	bound	to	fun.		Then	answer	part	(b)	below.		You	need	to	show	the	bindings	in	
the	global	environment	that	are	used	in	this	code,	but	you	do	not	need	to	show	any	additional	standard	
functions	or	other	global	values.	

	

	

	

	

	

	

	

	

	

	

	

	

	

(b)	(2	points)	What	value	is	produced	when	we	evaluate	(fun 2)?	

CSE	413	Midterm,	Nov.	7,	2016	 Page	8	of	8	

Question	7.	(10	points)		Compose	in	MUPL.		Recall	from	the	previous	question	that	one	way	to	write	
function	composition	in	Racket	is	as	follows:	

(define (compose f g)
 (lambda (x) (f (g x))))

For	this	question,	write	an	equivalent	MUPL	function	(i.e.,	use	the	Racket	struct	definitions	from	the	
MUPL	assignment	to	write	a	MUPL	function	that	is	equivalent	to	the	Racket	compose).		Complete	the	
following	Racket	define	so	that	mupl-compose	is	bound	to	an	appropriate	MUPL	data	structure	
that	represents	the	MUPL	version	of	compose.			The	main	change	you	will	need	to	make	is	to	curry	the	
function,	since	the	Racket	compose	had	two	arguments,	while	MUPL	only	supports	single-argument	
functions.	(Hint:	the	sample	solution	is	4	lines	and	is	not	particularly	tricky)	

(define mupl-compose
 ;; write your code below

)

For	reference,	here	are	the	structures	defined	in	the	original	MUPL	code	(most	of	which	you	probably	
won’t	need).		The	#:transparent	directives	have	been	omitted	to	save	space,	but	that	does	not	
change	the	meaning	or	use	of	the	struct	data	types.	

(struct var (string)) ;; a variable, e.g., (var "foo")
(struct int (num)) ;; a constant number, e.g., (int 17)
(struct add (e1 e2)) ;; add two expressions
(struct isgreater (e1 e2)) ;; evaluate to 1 if e1>e2 else 0
(struct ifnz (e1 e2 e3)) ;; if e1 is not 0 then e2 else e3
(struct fun (nameopt formal body)) ;; a recursive(?) 1-argument function
(struct call (funexp actual)) ;; function call
(struct mlet (var e body)) ;; a local binding (let var = e in body)
(struct apair (e1 e2)) ;; make a new pair
(struct first (e)) ;; get first part of a pair
(struct second(e)) ;; get second part of a pair
(struct munit ()) ;; unit value -- good for ending a list
(struct ismunit (e)) ;; evaluate to 1 if e is munit else 0 	

