CSE 413 Midterm Nov. 3, 2014 Sample Solution

function Question 1. (15 points) (programming warmup) Write a Racket clone that returns an
exact duplicate of its argument. Examples:

(clone "()) => '()

(clone 'thing) => 'thing

(clone '(1 foo 3)) => '"(1 foo 3)

(clone "(1 (2 (idii 4) (((5))))) => "(1 (2 (iii 4) (((5)))))
(there (are "no" (numbers)) here) =>

(
clone '(
'(there (are "no" (numbers)) here)

Your solution does not need to be tail-recursive. You may define additional helper functions at top-level
if you need them.

Compact version with no special case for empty lists (handled as part of the base case):
(define clone
(lambda (1lst)
(if (pair? 1st)
(cons (clone (car 1lst)) (clone (cdr 1lst)))

1st)))

More traditional, with empty lists handled as a separate case:
(define clone
(lambda (1lst)
(cond ((null? 1lst) '())
((pair? 1lst) (cons (clone (car 1lst)) (clone (cdr 1lst))))

(else 1st))))

Note: In this and other “define a function” questions, either a solution using explicit Lambda terms
(define £ (lambda (x y) expr) orone usingthe notation (define (f x y) expr)
would be fine unless an explicit 1lambda expression is needed for some reason.

CSE 413 Midterm, Nov. 3, 2014 Page 1 of 7

CSE 413 Midterm Nov. 3, 2014 Sample Solution

Question 2. (15 points) Many Racket programs (including MUPL) use association lists as data structures
to store key-value pairs, much like a hash table or dictionary in other languages. An association list is a
list whose elements are key-value pairs formed with cons. For instance, a list that stores the key-value
pairs apple, 1 and cow, 2is (cons (cons 'apple 1) (cons (cons 'cow 2) '()) and
would printas ' ((apple . 1) (cow . 2)).

For this problem, write a function (insert key value assoc) thatreturnsa list where the pair
(key . wvalue) hasbeen added to the list assoc. If key duplicates a key that already appears in
assoc, theold (key . value) pairshould be replaced in the new list by the new pair. You should
use equal ? to test whether two key values are the same. You may assume that there are no duplicate
key values in the original list. Since an association list is not ordered, the ordering of key, value pairs in
the resulting list is not specified, in case that matters for your solution.

(define insert
(lambda (key value 1st)
(cond ((null? 1st) (list (cons key value)))
((equal? (caar 1lst) key) (cons (cons key value) (cdr 1st)))

(else (cons (car 1lst) (insert key value (cdr 1lst)))))))

CSE 413 Midterm, Nov. 3, 2014 Page 2 of 7

CSE 413 Midterm Nov. 3, 2014 Sample Solution

Question 3. (18 points) (chasing our tail) Write a tail-recursive, self-contained function (avg 1st)
that computes the average value of a list of numbers 1st. The average should be computed using

(/ sum nitems), where sum is the sum of the items in the list and nitems is the number of items
in the list. Don’t worry about whether this returns an integer, rational, or floating-point value. That will
depend on the numbers in the list and you do not need to do anything to handle different types of
numbers in any special way.

Examples: (avg '(1 2 3)) => 2
(avg '(1 2 4)) => 2 1/3
(avg "(1 2.0 4)) => 2.3333333

Simplifying assumptions: You may assume that the function argument is a simple list of numbers with no
non-numeric data or nested lists, and that there is at least one number in the list. You do not need to
check for errors or unexpected items in the list.

Complications: For full credit your solution must be properly tail-recursive and must not define any other
functions or other values besides avg in the top-level global scope. However, you may, of course,
include any local function definitions or other bindings inside the scope of the avg function itself.

(define avg
(lambda (1lst)
(letrec ((aux
(lambda (sum nterms lst)
(if (null? 1st)
(/ sum nterms)
(aux (+ sum (car 1lst)) (+ 1 nterms) (cdr 1lst))))))

(aux 0 0 1st))))

CSE 413 Midterm, Nov. 3, 2014 Page 3 of 7

CSE 413 Midterm Nov. 3, 2014 Sample Solution

Question 4. (18 points) Pictures! Suppose we execute the following code at the top level of a Racket
interpreter:

(define puzzle

(lambda (x)
(let ((w (cons x Xx)))
(lambda (p)

(cons p w)))))

(define alist '(a b))
(define p (puzzle alist))

(a) (12 points) Draw a diagram showing the environments, bindings, and closures created by the above
definitions. Then answer part (b) below.

a b
global
puzzle -> <(x)(let ...), @] | ; I
alist @
p -> <(p>(cons x x), K
puzzle

(b) (6 points) What is the printed value of (p 'x) if we evaluate that expression after the above
definitions have been made?

'(x (a b) a b)

CSE 413 Midterm, Nov. 3, 2014 Page 4 of 7

CSE 413 Midterm Nov. 3, 2014 Sample Solution

Question 5. (18 points) Recall that we can implement a stream in Racket as a thunk (0-argument)
function that when called returns a pair whose car is the current item in the stream and whose cdr is
a stream (thunk) that will return the next element of the stream when used appropriately.

(a) (12 points) Define a stream squares that produces the sequence 2, 4, 16, 256, 65536, In other
words each element of the stream is the square of the previous element.

(define squares
(letrec ((f (lambda (x) (cons x (lambda () (£ (* x x)))))))

(lambda () (£ 2))))

(b) (6 points) Write a Racket expression that produces the second element of the stream squares
(i.e., 4) when it is evaluated. Your answer must, of course, include appropriate operations involving
squares and functions like car and cdr to produce this element — it is not sufficient to just write 4.

(car ((cdr (squares))))

CSE 413 Midterm, Nov. 3, 2014 Page 5 of 7

CSE 413 Midterm Nov. 3, 2014 Sample Solution

Question 6. (16 points) MUPL we must. It’s time to add a new operation to MUPL. (DON’T PANIC!!!
The answer is considerably shorter than the question!) The operation we want to add is a swap
function that interchanges the two elements of a MUPL pair. The specification is:

e Ifeisa MUPL expression, then (swap e) isa MUPL expression. If e is not a MUPL pair
(apair?) thenitisan error. Otherwise if e is the pair (apair el e2), the value of

(swap e) isthe pair (apair e2 el).

On the next page, write the code needed to add this new expression to the MUPL interpreter eval-
under-env function. Hint: the swap operation should do no more and no less evaluation of its
argument than is done by the fst and snd operations that extract components of a MUPL pair.

You should assume that the following structure has been added to MUPL to represent this expression:

(struct swap (e) #:transparent) ;; swap two parts of a pair

For reference, here are the other structures defined in the original MUPL code (most of which you
probably won’t need). The #: transparent directives have been omitted from the struct
declarations to save space, but that does not change the meaning or use of the struct data types.

struct snd (e) ;7 get second part of a pair

struct munit () ;; unit value -- good for ending a list

(struct var (string)) ;; a variable, e.g., (var "foo")

(struct int (num)) ;; a constant number, e.g., (int 17)

(struct add (el e2)) ;; add two expressions

(struct isgreater (el e2)) ;; evaluate to 1 if el>e2 else 0

(struct ifnz (el e2 e3))y ;; 1f el is not 0 then e2 else e3

(struct fun (nameopt formal body)) ;; a recursive(?) l-argument function
(struct call (funexp actual)) ;; function call

(struct mlet (var e body)) ;; a local binding (let var = e in body)
(struct apair (el e2)) ;; make a new pair

(struct fst (e) ;5 get first part of a pair

(

(

(

)
)
)
)

struct ismunit (e) ;; evaluate to 1 1if e is unit else O

;; a closure is not in "source" programs; it is what functions evaluate to
(struct closure (env fun) #:transparent)

Reminder: the Racket function (error "message") can be used to terminate evaluation with the

given message.

Write your code on the next page. (You can tear this page out of the exam for reference if that is
convenient.)

CSE 413 Midterm, Nov. 3, 2014 Page 6 of 7

CSE 413 Midterm Nov. 3, 2014 Sample Solution

Question 6. (cont.) Write your code to implement the new MUPL swap expression below.

(struct swap (e) #:transparent) ;; swap two parts of a pair

(define (eval-under-env e env)
(cond [(var? e)
(envlookup env (var-string e))]
;; remaining cases omitted...

;; CHANGE add your code for swap here
[(swap? e)
(let ([pr (eval-under-env (swap-e e) env)])
(if (apair? pr)
(apair (apair-e2 pr) (apair-el pr))

(error "MUPL swap applied to non-pair")))]

[#t (error (format "bad MUPL expression: ~v" e))]))
;; Do NOT change

(define (eval-exp e)
(eval-under-env e null))

CSE 413 Midterm, Nov. 3, 2014

Page 7 of 7

