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Today�s Outline

• Administrative info
• Overview of the course
• Introduction to Racket
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Registration

Not registered yet?

• Please watch for changes in registration and 
grab an empty slot when one shows up

• We won’t attempt to manage wait lists or add 
codes for now
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Who, Where & When

• Instructor: Hal Perkins 
(perkins@cs.washington.edu)

• TAs: Jack Eggleston, Aaron Johnston, 
Johnny Wu, Nate Yazdani

• Office hours: will set up and announce shortly
• Lectures: MWF 2:30-3:20, CMU 120
• No sections, but would people be interested in 

some sort of (semi-)formal work sessions?
–What if we attach 1 credit hour to it?
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Course Web

• All info is on the CSE 413 web:

www.cs.uw.edu/413

• Look there for schedules, contact information, 
lecture materials, assignments, links to 
discussion boards and mailing lists, etc.

UW CSE 413 Winter 2019 5



CSE 413 Discussion Board

• We’re using a Google group
– Log in with your “UW Google Credentials”
– Link on the course home page

• Join in, help each other out, stay connected 
outside of class
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CSE 413 E-mail List

• If you are registered for the course you are 
automatically subscribed

• Used for posting important announcements 
by instructor and TAs

• You are responsible for anything sent here
–Mail to this list is sent to your designated UW 

email address
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Course Computing

• All software is freely available and can be 
installed anywhere you want
– Links on the course web

• Also should be available in the College of Arts 
& Sciences Instructional Computing Lab 
– Let us know if there are problems
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Grading: Estimated Breakdown

• Approximate Grading:

– Homework: 55%

– Midterm: 15% (in class, prob. Fri. Feb. 15)

– Final: 25% (Tue. March 19?, 2:30 pm)

– Other ≤5% (citizenship, effort, …)

• Assignments:

– Weights will differ depending on difficulty

– Assignments will be a mix of shorter written exercises 

and shorter/longer programming projects
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Deadlines & Late Policy
• Assignments submitted online, graded, and 

feedback returned via GradeScope
– Due @11pm
– Most due Tuesday evenings, a few other nights
– Calendar has likely schedule; might change some

• Late policy: 4 “late days” for entire quarter
– At most 2 on any single assignment
– Used only in integer, 24-hour units
– Don’t burn them up early!!
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Academic (Mis-)Conduct
• You are expected to do your own work

– Exceptions, if any, will be clearly announced
• Things that are academic misconduct:

– Sharing solutions, doing work for others, accepting work from 
others including have someone “walk you through” the details 

– Copying solutions found on the web
– Consulting solutions from previous offerings of this course
– etc.  Will not attempt to provide exact legislation and invite  

attempts to weasel around the rules
• Integrity is a fundamental principle in the academic world 

(and elsewhere) – we and your classmates trust you; don’t 
abuse that trust

• You must know the course policy– Read It! (on the web)
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Working With Colleagues

• “Do your own work” does not mean “lock 
yourself in a windowless room”.  Learning 
from each other and from the course staff is a 
good thing; sharing ideas and talking is a good 
thing; finding useful resources is a good thing

– Representing something that you didn’t do as 
your own is not.
• OK?
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Gadgets (1)

• Gadgets reduce focus and learning
– Bursts of info (e.g. emails, IMs, etc.) are addictive
– Heavy multitaskers have more trouble focusing 

and shutting out irrelevant information
• http://www.npr.org/2016/04/17/474525392/attention-

students-put-your-laptops-away

– Seriously, you will learn more if you use paper
instead!!!
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Gadgets (2)
• So how should we deal with laptops/phones/etc.?
– Just say no!
– No open gadgets during class (really!)*

• *Exceptions possible in cases where it actually makes sense – discuss with instructor

– Urge to search? – ask a question!  Everyone benefits!!
– You may close/turn off your electronic devices now
– Pull out a piece of paper and pen/pencil instead J

• We will post code samples and transcripts of demos; 
but you’ll want to have your own notes about key 
points and ideas
– Class should not be the same as watching videos with 

brains clicked off J

14



Reading

• No required $$$ textbook
• Good resources on the web
• “Functional Programming/Racket” link on course 

web:
– Course notes!  (also linked to calendar – read them!)
– Racket documentation
– How to Design Programs 

• Intro textbook using Scheme

– Structure and Interpretation of Computer Programs 
• Fantastic, classic intro CS book from MIT.  Some good 

examples here that are directly useful
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Tentative Course Schedule

• Week 1: Functional Programming/Racket
• Week 2: Functional Programming/Racket
• Week 3: Functional Programming/Racket
• Week 4: FP wrapup, environments, lazy eval
• Weeks 5-6: Object-oriented programming and 

Ruby; scripting languages
• Weeks 7-9: Language implementation, compilers 

and interpreters
• Week 10: garbage collection; special topics
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Work to do!

• Download Racket and install

• Run DrRacket and verify facts like 1+1=2
–Which, in racket is (eqv? (+ 1 1) 2) J

• Learn your way around the course web and 
linked resources
– Especially: read the Racket lecture notes that go 

with the first lectures
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Now where were we?

• Programming Languages

• Language Implementation
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Why Functional Programming?

• Focus on “functional programming” because of 
simplicity, power, elegance

• Stretch our brains – different ways of thinking about 
programming and computation
– Often a good way to think even if stuck with C/Java/…

• Now mainstream – lambdas/closures in Javascript, C#, 
Java 8, C++11; functional programming is the “secret 
sauce” in Google’s infrastructure; …

• Let go of Java/C/… for now
– Easier to approach functional prog. on its own terms
– We’ll make connections to other languages as we go
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Scheme / Racket
• Scheme:  The classic functional language
– Enormously influential in education, research

• Racket
– Modern Scheme dialect with some changes/extras
– DrRacket programming environment (was DrScheme

for many years)

• Expect your instructor to say “Scheme” 
accidentally at times

UW CSE 413 Winter 2019 20



Functional Programming
• Programming consists of defining and evaluating 

functions
• No side effects (assignment)
– An expression will always yield the same value when 

evaluated (referential transparency)
• No loops (use recursion instead)

• Racket/Scheme/Lisp include assignment and 
loops but they are not needed and we won’t use
– i.e., you will “lose points”, as the saying goes J

UW CSE 413 Winter 2019 21



Primitive Expressions

• constants
– Integer  
– rational 
– real
– boolean

• variable names (symbols)
– Names can contain almost any character except white 

space and parentheses
– Stick with simple names like sumsq, x, iter, same?, ...
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Compound Expressions

• Either a combination or a special form
1. Combination: (operator op1 op2 …)
– there are a lot of pre-defined operators
–We can define our own operators

2. Special form
– “keywords” in the language
– eg, define, if, cond
– have non-standard evaluation rules (more later)
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Combinations
• (operator operand1 operand2 …)

• this is prefix notation, the operator comes first
• a combination always denotes a procedure 

application
• the operator is a symbol or an expression, the 

applied procedure is the associated value
– +, -, abs, new-function
– characters like * and + are not special; if they do not 

stand alone then they are part of some name
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Evaluating Combinations

• To evaluate a combination
– Evaluate the subexpressions of the combination
• All of them, including the operator – it’s an expression 

too!
– Apply the procedure that is the value of the 

leftmost subexpression (the operator) to the 
arguments that are the values of the other 
subexpresions (the operands)

• Examples (demo)
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Evaluating Special Forms
• Special forms have unique evaluation rules
• (define x 3) is an example of a special 

form; it is not a combination
– the evaluation rule for a simple define is "associate 

the given name with the given value” or, more 
concisely, “bind the value to the name”

– All special forms do something different from simple 
evaluation of a value from (evaluated) operands

• There are a few more special forms, but there are 
surprisingly few compared to other languages
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Procedures
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Recall the define special form

• Special forms have unique evaluation rules
• (define x 3) is an example of a special 

form; it is not a combination
– the evaluation rule for a simple define is 

“associate the given name with the given value”, 
i.e., “bind the value to the name”
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Bind a value to a variable

• (define ánameñ áexprñ)
– define - special form
– name - name that the value of expr is bound to
– expr - expression that is evaluated to give the 

value for name
• define is valid only at the top level of a 

<program> and at the beginning of a <body>
–We will only use it at top-level
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Bind a procedure value (!) to a name

• (define (ánameñ áparamsñ) ábodyñ)
– define - special form
– name - the name that the procedure is bound to
– formal parameters - names used within the body 

of procedure, bound when procedure is called
– body - expression (or sequence of expressions) 

that will be evaluated when the procedure is 
called

– The result of the last expression in the body will 
be returned as the result of the procedure call
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Example definitions

(define pi 3.1415926535)

(define (area-of-disk r)
(* pi (* r r)))

(define (area-of-ring outer inner)
(- (area-of-disk outer)

(area-of-disk inner)))
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Defined procedures are “first class”

• Procedures that we define are used exactly 
the same way as the primitive procedures 
provided in Racket
– names of built-in procedures are not special; they 

are simply names that have been pre-defined
– you can't tell whether a name stands for a 

primitive (built-in) procedure or one we’ve 
defined by looking at the name or how it is used

– [Disclaimer: This is almost but not always strictly 
true in Racket]
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Booleans 

• One type of data object is boolean
#t (true) or #f (false)

• We can use these explicitly or by calculating 
them in expressions that yield boolean values

• An expression that yields a true or false value 
is called a predicate
#t =>
(< 5 5) => 
(> pi 0) => 
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Conditional expressions

• As in all languages, we need to be able to 
make decisions based on values 

• In Racket it’s not “if this is true, do that else do 
something else”

• Instead, we have conditional expressions.  The 
value of a conditional expression is the value 
of one of its subexpressions – which one 
depends on the value(s) of other expression(s)
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Special form: if

(if áe1ñ áe2ñ áe3ñ)

Evaluation:
• Evaluate áe1ñ
• If true, evaluate áe2ñ to get the if value 
• If false, evaluate áe3ñ to get the if value

• Example: (if (< x y) x y)
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Special form: cond

(cond áclause1ñ áclause2ñ … áclausenñ)

• each clause has the form
[ápredicateñ áexpressionñ]

• (Racket allows us to use[ ] and ( ) interchangeably, which can 
make things more readable)

• the last clause can be
[else áexpressionñ]

UW CSE 413 Winter 2019 36



Example: sign.scm

; return the sign of x: -1, 0, 1
(define (sign x)

(cond
[(< x 0) -1]
[(= x 0) 0]
[(> x 0) +1]))
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Logical composition

(and áe1ñ áe2ñ... áenñ)
(or áe1ñ áe2ñ... áenñ)
(not áeñ)

• Racket evaluates the expressions ei one at a 
time in left-to-right order until it determines 
the correct value
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in-range.scm

; true if val is lo <= val <= hi

(define (in-range lo val hi)
(and (<= lo val)

(<= val hi)))
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To Be Continued…

• For more information about Racket/Scheme, 
refer to notes on the Racket pages of the 
course web & reference material linked there

• More demos/examples in the next several 
lectures, very little PowerPoint, if any
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