
CSE 413
Programming Languages &
Implementation

Hal Perkins
Winter 2019

Ruby Containers, Blocks, and Procs

1CSE413 Winter 2019

The Plan

• Ruby container data structures
• Blocks and control structures (iterators, etc.)
• Blocks and first-class closures

• Later:
– Duck typing
– Inheritance
– Modules and mixins

2CSE413 Winter 2019

Containers in Ruby

• Like most scripting languages, Ruby provides very
general container classes

• Two major kinds
– Arrays: ordered by position
– Hashes: collections of <key, value> pairs

• Often known as associative arrays, maps, or
dictionaries

• Unordered

CSE413 Winter 2019 3

Ruby Arrays

• Instances of class Array
• Create with an array literal, or Array.new

words = ["how","now","brown", "cow"]
stuff = ["thing", 413, nil]
seq = Array.new

• Indexed with [] operator, 0-origin; negative indices
count from right

words[0] stuff[2] words[-2]
seq[1] = "something"

CSE413 Winter 2019 4

Ruby Hashes

• Instances of class Hash
• Create with an hash literal, or Hash.new

pets = { "spot"=>"dog","puff"=>"cat" }
tbl = Hash.new

• Indexed with [] operator
pets["puff"] pets["fido"]
pets["cheeta"] = "monkey"

– Can use almost anything as key type; can use
anything as element type

CSE413 Winter 2019 5

Containers and Iterators

• All containers respond to the message “each”,
executing a block of code for each item in the
container

words.each { puts "another word" }
words.each { | w | puts w }

CSE413 Winter 2019 6

Blocks

• A block is a sequence of statements surrounded by
{ … } or do … end

• Blocks must appear immediately following the
method call that executes them, on the same line

• Blocks may have 1 or more parameters at the
beginning surrounded by | … |
– Initialized by the method that runs (executes,

“calls”) the block

CSE413 Winter 2019 7

Blocks as Closures

• Blocks can access variables in surrounding scopes
wordlist = ""
words.each { |w| wordlist = wordlist +

w + " " }

– These are almost, but not quite, first-class
closures (some differences in scope rules
compared to Racket)

CSE413 Winter 2019 8

More Block Uses

• Besides iterating through containers, blocks are used
in many other contexts

3.times { puts "hello" }

n = 0
100.times { | k | n += k }
puts "sum of 0 + … + 99 is " + n

CSE413 Winter 2019 9

Block Execution

• Any method call can be followed by a block. The block
is executed by the method – when depends on the
method

• A block is executed in the context of the method call
– Block has access to variables at the call location
– Return in a block returns from surrounding method(!)

def search(x, words)
words.each { |w| if x==w then return end }
puts "not found"

end

CSE413 Winter 2019 10

yield

• Any method call can be followed by a trailing block.
A method “calls” the block with a yield statement.

def repeat Output:
yield hello
yield hello

end
repeat { puts "hello" }

CSE413 Winter 2019 11

yield with arguments

• If the block has parameters, use expressions with
yield to pass arguments

def xvii
yield 17

end
xvii { | n | puts n+1 }

– This is exactly how an iterator works

CSE413 Winter 2019 12

Blocks are “second-class”

• Blocks (and methods) are not objects in Ruby – i.e.,
not things that can be passed around as first-class
values

• All a method can do with a block is yield to it (i.e.,
call it)
– Can’t return it, store it in an object, etc.
– But can also turn blocks into real closures (next

slide)

CSE413 Winter 2019 13

First-class closures

• Implicit block arguments and yield are often sufficient
• But when you want a closure that can be returned,

stored, passed as an argument:
– The built-in Proc class
– Lambda method of Object takes a block and

makes a Proc
– Instances of Proc have a call method that can

be used to execute them

CSE413 Winter 2019 14

Creating Procs: examples

• Create a Proc object explicitly

p = Proc.new { | x, y | x+y }
…
p.call(x,y)

• Use Object’s lambda method

is_positive = lambda { |x| x > 0 }

CSE413 Winter 2019 15

Procs vs. Lambdas

• A Proc is a block wrapped in an object – and
behaves just like a block
– In particular, a return in a Proc will return from the
surrounding method where the Proc’s closure was
created
• Error if that method has already terminated

• A Lambda is more like a method
– Return just exits from the lambda

CSE413 Winter 2019 16

