
CSE 413
Programming Languages &
Implementation

Hal Perkins
Winter 2019

Ruby: Duck Typing, Inheritance, and Modules

1CSE413 Winter 2019

The plan…

Several related topics:
• “Duck typing” – dynamic typing in Ruby
• Inheritance and classes
• Modularity and mixins

Later:
• Multiple inheritance, interfaces, and mixins

And then:
• Start on grammars, scanners, parsers

2CSE413 Winter 2019

Types in Ruby

• Ruby is dynamically typed – everything is an object
• Only notion of an object’s “type” is what messages it

can respond to
– i.e., whether it has methods for a particular

message
– This can change dynamically for either all objects

of a class or for individual objects

3CSE413 Winter 2019

Duck Typing

• “If it walks like a duck and talks like a duck, it must be
a duck”
– Even if it isn’t
– All that matters is how an object behaves

• (i.e, what messages it understands)

– Maybe more accurate: it might as well be a duck if
you can’t tell the difference

4CSE413 Winter 2019

Thought Experiment (1)

• What must be true about x for this method to work?

def foo x
x.m + x.n

end

5CSE413 Winter 2019

Thought Experiment (2)

• What is true about x?
x.m + x.n

• Less than you might think
– x must have 0-argument methods m and n
– The object returned by x.m must have a + method

that takes one argument
– The object returned by x.n must have whatever

methods are needed by x.m.+ (!)

6CSE413 Winter 2019

Duck Typing Tradeoffs

• Plus
– Convenient, promotes code reuse
– All that matters is what messages an object can

receive
• Minus

– “Obvious” equivalences don’t hold: x+x, 2*x, x*2
– May expose more about an object than might be

desirable (more coupling in code)
– May allow objects to “work” in unintended /

inappropriate contexts

7CSE413 Winter 2019

Classes & Inheritance

• Ruby vs Java:
– Subclassing in Ruby is not about type checking –

it is not subtyping (because of dynamic typing)
– Subclassing in Ruby is about inheriting methods
– Java subclassing is about both (subtyping and

code inheritance)
• Can use super to refer to inherited code
• See examples in Points.rb

– ThreeDPoint inherits methods x and y
– ColorPoint inherits distance methods

8CSE413 Winter 2019

Overriding

• With dynamic typing, inheritance alone is just
avoiding cut/paste

• Overriding is the key difference
– When a method in a superclass makes a self

call, it resolves to a method defined in the
subclass if there is one

– Example: distFromOrigin2 in PolarPoint

9CSE413 Winter 2019

Ruby – Why Subclasses?

• Since we can add/change methods on the fly, why
use a subclass?

• Instead of class ColorPoint, why not just add a
color field to Point?
– Can’t do this in Java
– Can do it in Ruby, but it changes all Point

instances (including subclasses), even existing
ones

– Pro: now all Point classes have a color
– Con: Maybe that breaks something else or is the

wrong abstraction for some Point clients

10CSE413 Winter 2019

Organizing Large(r) Programs

• Issues
– Idea: divide code into manageable components
– Also: want to take advantage of reusable chunks

of code (libraries, classes, etc.)
• Strategy: Split code into separate files

– Typically, one or more classes per file
– Use “require” (or sometimes “load”) to access in

Ruby
– What about components that aren’t classes?

11CSE413 Winter 2019

Namespaces & Modules

• Idea: Want to break larger programs into pieces
where names can be reused independently
– Avoids clashes when combining libraries written

by different organizations or at different times

• Ruby solution: modules
– Separate source files that define namespaces, but

not necessarily classes

12CSE413 Winter 2019

Example (from Programming Ruby)

module Trig
PI = 3.14
def Trig.sin(x)
…

end
def Trig.cos(x)
…

end
end

module Moral
VERY_BAD = 0
BAD = 1
def Moral.sin(badness)
…

end
end

13CSE413 Winter 2019

Using Modules

…

require ‘trig’

require ‘moral’

y = Trig.sin(Trig::PI/4)

penance = Moral.sin(

Moral::VERY_BAD)

…

• Key point: Each
module defines a
namespace

– No clashes with
same names in other
modules

• Module methods are
a lot like class
methods

14CSE413 Winter 2019

Mixins

• Modules can be used to add behavior to classes –
mixins
– Define instance methods and data in module

– “include” the module in a class – incorporates the
module definitions into the class
• Now the class has its original behavior plus

whatever was added in the mixin

– Provides most of the capabilities of multiple
inheritance and/or Java interfaces

15CSE413 Winter 2019

Example

module Debug
def trace
…

end
end

class Something
include debug
…

end

class SomethingElse
include debug
…
end

• Both classes have the
trace method defined,
and it can interact with
other methods and data
in the host class as if it
was defined there
– (trace is not “shared” by

the classes and can’t
pass information back
and forth)

16CSE413 Winter 2019

Exploiting Mixins – Comparable

• The real power of this is when mixins build on or
interact with code in the classes that use them

• Example: library mixin Comparable
– Class must define operator <=>

(a <=> b returns -1, 0, +1 if a<b, a==b, a>b)
– Comparable mixin uses “client” <=> to define

<, <=, ==, >=, >, and between? for that class

17CSE413 Winter 2019

Another example – Enumerable

• Container/collection class provides an each method
to call a block for each item in the collection

• Enumerable module builds many mapping-like
operations on top of this
– map, include?, find_all, …
– If items in the collection implement <=> you also

get sort, min, max, …

18CSE413 Winter 2019

Iterator Example

• Suppose we want to define a class of Sequence
objects that have a from, to, and step, and contain
numbers x such that
– from <= x <= to, and
– x = from + n*step for integer value n

(Credit: Ruby Programming Language, Flanagan & Matsumoto)

19CSE413 Winter 2019

Sequence Class & Constructor

class Sequence
mixin all of the methods in Enumerable
include Enumerable

def initialize(from, to, step)
@from, @to, @step = from, to, step

end
…

20CSE413 Winter 2019

Sequence each method

• To add an iterator to Sequence and make it also work
with Enumerable, all we need is this:

def each
x = @from
while x <= @to
yield x
x += @step

end
end

21CSE413 Winter 2019

