
CSE 413
Programming Languages &
Implementation

Hal Perkins
Winter 2019

Grammars, Scanners & Regular Expressions

1CSE413 Winter 2019

Agenda

• Overview of language recognizers
• Basic concepts of formal grammars
• Scanner Theory

– Regular expressions
– Finite automata (to recognize regular expressions)

• Scanner Implementation

2CSE413 Winter 2019

And the point is…

• How do we execute this?

int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {
nPos++;

}
}

• Or, more concretely, how do we program a computer to
understand and carry out a computation described in a
programming language?

3CSE413 Winter 2019

Compilers vs. Interpreters (recall)

• Interpreter
– A program that reads a source program and

executes that program
• Compiler

– A program that translates a program from one
language (the source) to another (the target)

• For both of these we need to represent the program
in some suitable data structure (usually a tree)
– With MUPL we started with the tree and didn’t

worry about where it came from

CSE413 Winter 2019 4

Interpreter

• Interpreter
– Execution engine
– Program execution interleaved with analysis

running = true;
while (running) {

analyze next statement;
execute that statement;

}
– May involve repeated analysis of some statements

(loops, functions)
– MUPL was a special case of this – a function to

evaluate expressions under a given environment
5CSE413 Winter 2019

Compiler

• Read and analyze entire program
• Translate to semantically equivalent program in

another language
– Presumably easier to execute or more efficient
– Usually “improve” the program in some fashion

• Offline process
– Tradeoff: compile time overhead (preprocessing

step) vs execution performance

6CSE413 Winter 2019

Hybrid approaches

• Well-known example: Java

– Compile Java source to byte codes – Java Virtual

Machine language (.class files)

– Execution

• Interpret byte codes directly (interpreter in

JVM), or

• Compile some or all byte codes to native code

– Just-In-Time compiler (JIT) – detect hot spots &

compile on the fly to native code when method is

called

7CSE413 Winter 2019

Compiler/Interpreter Structure

• First approximation
– Front end: analysis

• Read source program and understand its
structure and meaning

– Back end: synthesis
• Execute or generate equivalent target program

8

Source TargetFront End Back End

CSE413 Winter 2019

Common Issues

• Compilers and interpreters both must read the input –
a stream of characters – and “understand” it: analysis

w h i l e (k < l e n g t h) { <nl>
<tab> i f (a [k] > 0) <nl> <tab>
<tab>{ n P o s + + ; } <nl> <tab> }

9CSE413 Winter 2019

Programming Language Specs

• Since the 1960s, the syntax of every significant

programming language has been specified by a

formal grammar

– First done in 1959 with BNF (Backus-Naur Form
or Backus-Normal Form) used to specify the

syntax of ALGOL 60

– Adapted from the linguistics community

(Chomsky)

10CSE413 Winter 2019

Grammar for a Tiny Language

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

11CSE413 Winter 2019

Context-Free Grammars

Formally, a grammar G is a tuple <N,Σ,P,S> where

N a finite set of non-terminal symbols

Σ a finite set of terminal symbols

P a finite set of productions

A subset of N × (N È Σ)*
(can think of these as rules from N → (N È Σ)*)

S the start symbol, a distinguished element of N
If not otherwise specified, this is usually assumed to be
the non-terminal on the left of the first production

CSE413 Winter 2019 12

Productions

• The rules of a grammar are called productions
• Rules contain

– Nonterminal symbols: grammar variables (program,
statement, id, etc.)

– Terminal symbols: concrete syntax that appears in programs
(a, b, c, 0, 1, if, (, {,), }, …)

• Meaning of production
nonterminal ::= <sequence of terminals and nonterminals>

In a derivation, any instance of nonterminal can be replaced
by the sequence of terminals and nonterminals on the right
of the production

• Often, there are two or more productions for a single
nonterminal – can use any at different points in a derivation

13CSE413 Winter 2019

Alternative Notations

• There are several common notations for productions;
all mean the same thing

ifStmt ::= if (expr) stmt
ifStmt if (expr) stmt
<ifStmt> ::= if (<expr>) <stmt>

14CSE413 Winter 2019

Example Derivation

a = 1 ; if (a + 1) b = 2 ;

15

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

CSE413 Winter 2019

Parsing

• Parsing: reconstruct the derivation (syntactic
structure) of a program

• In principle, a single recognizer could work directly
from the concrete, character-by-character grammar

• In practice this is never done

16CSE413 Winter 2019

Parsing & Scanning

• In real compilers the recognizer is split into two
phases
– Scanner: translate input characters to tokens

• Also, report lexical errors like illegal characters
and illegal symbols

– Parser: read token stream and reconstruct the
derivation

• Typically a procedural interface – parser asks the
scanner for new tokens when needed

17

Scanner Parsersource tokens

CSE413 Winter 2019

Scanner Example

• Input text
// this statement does very little
if (x >= y) y = 42;

• Token Stream

– Tokens are atomic items, not character strings
– Comments and whitespace are not tokens in

most programming languages
• But sometimes whitespace does matter

Examples: Python indentation, Ruby newlines
18

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

CSE413 Winter 2019

Parser Example

• Token Stream Input

19

• Abstract Syntax Tree

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

CSE413 Winter 2019

Why Separate the Scanner and Parser?

• Simplicity & Separation of Concerns
– Scanner hides details from parser (comments,

whitespace, etc.)
– Parser is easier to build; has simpler input stream

(tokens)
• Efficiency

– Scanner can use simpler, faster design
• (But still often consumes a surprising amount of

the compiler’s total execution time if you’re not
careful)

20CSE413 Winter 2019

Tokens

• Idea: we want a distinct token kind (lexical class) to
represent each distinct terminal symbol in the
programming language
– Examine the grammar to find these

• Some tokens may have attributes. Examples:
– All integer constants are a single kind of token, but

the actual value (17, 42, …) will be an attribute
– Identifier tokens carry the actual identifier string as

an attribute of the token “identifier”

21CSE413 Winter 2019

Typical Programming Language Tokens

• Operators & Punctuation
– + - * / () { } [] ; : :: < <= == = != !

…
– Each of these is a distinct lexical class

• Keywords
– if while for goto return switch void …
– Each of these is also a distinct lexical class (not a string)

• Identifiers
– A single ID lexical class, but parameterized by actual id

• Integer constants
– A single INT lexical class, but parameterized by int value

• Other constants (doubles, strings, …), etc.

22CSE413 Winter 2019

Principle of Longest Match

• In most languages, the scanner should pick the
longest possible string to make up the next token if
there is a choice

• Example
return iffy != dowhile;

should be recognized as 5 tokens

not more (i.e., not parts of words or identifiers, not !
and = as separate tokens)

23

RETURN ID(iffy) NEQ ID(dowhile) SCOLON

CSE413 Winter 2019

Formal Languages & Automata
Theory (in one slide)
• Alphabet: a finite set of symbols
• String: a finite, possibly empty sequence of symbols from

an alphabet
• Language: a set, often infinite, of strings
• Finite specifications of (possibly infinite) languages

– Automaton – a recognizer; a machine that accepts all
strings in a language (and rejects all other strings)

– Grammar – a generator; a system for producing all
strings in the language (and no other strings)

• A particular language may be specified by many different
grammars and automata

• A grammar or automaton specifies only one language

24CSE413 Winter 2019

Regular Expressions and FAs

• The lexical grammar (structure) of most programming
languages can be specified with regular expressions

– Not always, e.g., FORTRAN and some others, but can
usually cheat in the unusual corner cases

• Tokens can be recognized by a deterministic finite
automaton (DFA)

– Can be either table-driven or built by hand based on
lexical grammar

• Facts (er, theorems): any language that can be generated
by a regexp can be recognized by the corresponding DFA;
for every DFA, there is a set of regular expressions that
generate the language it recognizes

25CSE413 Winter 2019

Regular Expressions

• Defined over some alphabet Σ
– For programming languages, commonly ASCII or

Unicode
• If re is a regular expression, L(re) is the language (set

of strings) generated by re

26CSE413 Winter 2019

Fundamental REs

re L(re) Notes

a { a } Singleton set, for each a in Σ

ε { ε } Empty string

{ } Empty language

27

Æ

CSE413 Winter 2019

Operations on REs

re L(re) Notes
rs L(r)L(s) Concatenation
r | s L(r) L(s) Combination (union)
r* L(r)* 0 or more occurrences

(Kleene closure)

28

• Precedence: * (highest), concatenation, | (lowest)
• Parentheses can be used to group REs as needed

È

CSE413 Winter 2019

Abbreviations

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (a|b|…|z) 1 character in given range

[abxyz] (a|b|x|y|z) 1 of the given characters

29

• The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience. Typical examples:

CSE413 Winter 2019

Examples

re Meaning
+ single + character
! single ! character
= single = character
!= 2 character sequence
<= 2 character sequence
hogwash 7 character sequence

30CSE413 Winter 2019

More Examples

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*

31CSE413 Winter 2019

Abbreviations

• Many systems allow abbreviations to make writing
and reading definitions easier

name ::= re

– Restriction: abbreviations may not be circular
(recursive) either directly or indirectly
(otherwise it would no longer be a regular
expression – would be a context-free grammar)

32CSE413 Winter 2019

Example

• Possible syntax for numeric constants

digit ::= [0-9]
digits ::= digit+
number ::= digits (. digits)?

([eE] (+ | -)? digits) ?

33CSE413 Winter 2019

Recognizing REs

• Finite automata can be used to recognize strings
generated by regular expressions

• Can build by hand or automatically
– Not totally straightforward, but can be done

systematically
– Tools like Lex, Flex, and JLex do this

automatically from a set of REs read as input
– Even if you don’t use a FA explicitly, it is a good

way to think about the recognition problem

34CSE413 Winter 2019

Finite State Automaton (FSA)

• A finite set of states
– One marked as initial state
– One or more marked as final states
– States sometimes labeled or numbered

• A set of transitions from state to state
– Each labeled with symbol from Σ, or ε

• Operate by reading input symbols (usually characters)
– Transition can be taken if labeled with current symbol
– ε-transition can be taken at any time

• Accept when final state reached & no more input
– Difference in a scanner: start scan in initial state at

previous point in input. When a final state is reached,
recognize the token corresponding to that final state

• Reject if no transition possible, or no more input and not in
final state (DFA)

35CSE413 Winter 2019

Example: FSA for “cat”

36

a tc

CSE413 Winter 2019

DFA vs NFA

• Deterministic Finite Automata (DFA)
– No choice of which transition to take under any

condition
• Non-deterministic Finite Automata (NFA)

– Choice of transition in at least one case
– Accept - if some way to reach final state on given

input
– Reject - if no possible way to final state

37CSE413 Winter 2019

FAs in Scanners

• Want DFA for speed (no backtracking)

• Conversion from regular expressions to NFA is easy

• There is a well-defined procedure for converting a
NFA to an equivalent DFA (subset construction)
– See any formal language or compiler textbook for

details (RE to NFA to DFA to minimized DFA)

38CSE413 Winter 2019

Example: DFA for hand-written scanner

• Idea: show a hand-written DFA for some typical
programming language constructs
– Then use the DFA to construct a hand-written

scanner
• Setting: Scanner is called whenever the parser needs

a new token
– Scanner remembers current position in input file
– Starting there, use a DFA to recognize the longest

possible input sequence that makes up a token,
update the “current position”, and return that token

39CSE413 Winter 2019

Scanner DFA Example (1)

40

0

Accept LPAREN(
2

Accept RPAREN)
3

whitespace
or comments

Accept SCOLON;
4

Accept EOFend of input
1

CSE413 Winter 2019

Scanner DFA Example (2)

41

Accept NEQ! 6

Accept NOT7

5 =

other

Accept LEQ< 9

Accept LESS10

8 =

other

CSE413 Winter 2019

Scanner DFA Example (3)

42

[0-9]

Accept INT12

11

other

[0-9]

CSE413 Winter 2019

Scanner DFA Example (4)

• Strategies for handling identifiers vs keywords
– Hand-written scanner: look up identifier-like things in table of

keywords to classify (good application of perfect hashing)
– Machine-generated scanner: generate DFA with appropriate

transitions to recognize keywords
• Lots ’o states, but efficient (no extra lookup step)

43

[a-zA-Z]

Accept ID or keyword14

13

other

[a-zA-Z0-9_]

CSE413 Winter 2019

Implementing a Scanner by Hand:
Token Representation
• A token is a simple, tagged structure. Something like:

public class Token {
public int kind; // token’s lexical class
public int intVal; // integer value if class = INT
public String id; // actual identifier if class = ID
// lexical classes (should really be an enum type)
public static final int EOF = 0; // “end of file” token
public static final int ID = 1; // identifier, not keyword
public static final int INT = 2; // integer
public static final int LPAREN = 4;
public static final int SCOLN = 5;
public static final int WHILE = 6;
// etc. etc. etc. … // but use enums if you’ve got ‘em

44CSE413 Winter 2019

Simple Scanner Example

// global state and methods

static char nextch; // next unprocessed input character

// advance to next input char
void getch() { … }

// skip whitespace and comments
void skipWhitespace() { … }

45CSE413 Winter 2019

Scanner getToken() pseudocode

// return next input token
public Token getToken() {

Token result;

skipWhiteSpace();

if (no more input) {
result = new Token(Token.EOF); return result;

}

switch(nextch) {
case '(': result = new Token(Token.LPAREN); getch(); return result;
case ‘)': result = new Token(Token.RPAREN); getch(); return result;
case ‘;': result = new Token(Token.SCOLON); getch(); return result;

// etc. …

46CSE413 Winter 2019

getToken() (2)
case '!': // ! or !=

getch();
if (nextch == '=') {

result = new Token(Token.NEQ); getch(); return result;
} else {

result = new Token(Token.NOT); return result;
}

case '<': // < or <=
getch();
if (nextch == '=') {

result = new Token(Token.LEQ); getch(); return result;
} else {

result = new Token(Token.LESS); return result;
}

// etc. …

47CSE413 Winter 2019

getToken() (3)

case '0': case '1': case '2': case '3': case '4':

case '5': case '6': case '7': case '8': case '9':

// integer constant

String num = nextch;

getch();

while (nextch is a digit) {

num = num + nextch; getch();

}

result = new Token(Token.INT, Integer(num).intValue());

return result;

…

48CSE413 Winter 2019

getToken (4)

case 'a': … case 'z':
case 'A': … case 'Z': // id or keyword

string s = nextch; getch();
while (nextch is a letter, digit, or underscore) {

s = s + nextch; getch();
}
if (s is a keyword) {

result = new Token(keywordTable.getKind(s));
} else {

result = new Token(Token.ID, s);
}
return result;

49CSE413 Winter 2019

Alternatives

• Use a tool to build the scanner from the (regexp)
grammar
– Often can be more efficient than hand-coded!

• Build an ad-hoc scanner using regular expression
package in implementation language
– Ruby, Perl, Java, many others
– Suggest you use this for our project (good excuse

to learn the Ruby regexp package)

50CSE413 Winter 2019

