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Agenda

• Overview of language recognizers
• Basic concepts of formal grammars 
• Scanner Theory

– Regular expressions
– Finite automata (to recognize regular expressions)

• Scanner Implementation
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And the point is… 

• How do we execute this?

int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {
nPos++;

}
}

• Or, more concretely, how do we program a computer to 
understand and carry out a computation described in a 
programming language?
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Compilers vs. Interpreters (recall)

• Interpreter
– A program that reads a source program and 

executes that program
• Compiler

– A program that translates a program from one 
language (the source) to another (the target)

• For both of these we need to represent the program 
in some suitable data structure (usually a tree)
– With MUPL we started with the tree and didn’t 

worry about where it came from
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Interpreter

• Interpreter
– Execution engine
– Program execution interleaved with analysis

running = true;
while (running) {

analyze next statement;
execute that statement;

}
– May involve repeated analysis of some statements 

(loops, functions)
– MUPL was a special case of this – a function to 

evaluate expressions under a given environment
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Compiler

• Read and analyze entire program
• Translate to semantically equivalent program in 

another language
– Presumably easier to execute or more efficient
– Usually “improve” the program in some fashion

• Offline process
– Tradeoff: compile time overhead (preprocessing 

step) vs execution performance
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Hybrid approaches

• Well-known example: Java

– Compile Java source to byte codes – Java Virtual 

Machine language (.class files)

– Execution

• Interpret byte codes directly (interpreter in 

JVM), or

• Compile some or all byte codes to native code

– Just-In-Time compiler (JIT) – detect hot spots & 

compile on the fly to native code when method is 

called
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Compiler/Interpreter Structure

• First approximation
– Front end: analysis

• Read source program and understand its 
structure and meaning

– Back end: synthesis
• Execute or generate equivalent target program

8

Source TargetFront End Back End
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Common Issues

• Compilers and interpreters both must read the input –
a stream of characters – and “understand” it: analysis

w h i l e ( k < l e n g t h ) { <nl> 
<tab> i f ( a [ k ] > 0 ) <nl> <tab> 
<tab>{ n P o s + + ; } <nl> <tab> }
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Programming Language Specs

• Since the 1960s, the syntax of every significant 

programming language has been specified by a 

formal grammar

– First done in 1959 with BNF (Backus-Naur Form 
or Backus-Normal Form) used to specify the 

syntax of ALGOL 60

– Adapted from the linguistics community 

(Chomsky)
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Grammar for a Tiny Language

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if ( expr ) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Context-Free Grammars

Formally, a grammar G  is a tuple <N,Σ,P,S> where

N  a finite set of non-terminal symbols

Σ a finite set of terminal symbols

P  a finite set of productions

A subset of N × (N  È Σ )*
( can think of these as rules from N  → (N  È Σ )* )

S  the start symbol, a distinguished element of N 
If not otherwise specified, this is usually assumed to be 
the non-terminal on the left of the first production
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Productions

• The rules of a grammar are called productions
• Rules contain

– Nonterminal symbols: grammar variables (program, 
statement, id, etc.)

– Terminal symbols: concrete syntax that appears in programs 
(a, b, c, 0, 1, if, (, {, ), }, …)

• Meaning of production 
nonterminal ::= <sequence of terminals and nonterminals>

In a derivation, any instance of nonterminal can be replaced 
by the sequence of terminals and nonterminals on the right 
of the production

• Often, there are two or more productions for a single 
nonterminal – can use any at different points in a derivation
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Alternative Notations

• There are several common notations for productions; 
all mean the same thing

ifStmt ::= if ( expr ) stmt
ifStmt if ( expr ) stmt
<ifStmt> ::= if ( <expr> ) <stmt>
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Example Derivation

a  =  1  ;              if   (   a    +    1   )                 b   =   2  ;
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program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if ( expr ) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Parsing

• Parsing: reconstruct the derivation (syntactic 
structure) of a program

• In principle, a single recognizer could work directly 
from the concrete, character-by-character grammar

• In practice this is never done
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Parsing & Scanning

• In real compilers the recognizer is split into two 
phases
– Scanner: translate input characters to tokens

• Also, report lexical errors like illegal characters 
and illegal symbols

– Parser: read token stream and reconstruct the 
derivation

• Typically a procedural interface – parser asks the 
scanner for new tokens when needed
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Scanner Parsersource tokens
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Scanner Example

• Input text
// this statement does very little
if (x >= y) y = 42;

• Token Stream

– Tokens are atomic items, not character strings
– Comments and whitespace are not  tokens in 

most programming languages
• But sometimes whitespace does matter 

Examples: Python indentation, Ruby newlines
18

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON
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Parser Example

• Token Stream Input

19

• Abstract Syntax Tree

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)
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Why Separate the Scanner and Parser?

• Simplicity & Separation of Concerns
– Scanner hides details from parser (comments, 

whitespace, etc.)
– Parser is easier to build; has simpler input stream 

(tokens)
• Efficiency

– Scanner can use simpler, faster design
• (But still often consumes a surprising amount of 

the compiler’s total execution time if you’re not 
careful)
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Tokens

• Idea: we want a distinct token kind (lexical class) to 
represent each distinct terminal symbol in the 
programming language
– Examine the grammar to find these

• Some tokens may have attributes. Examples:
– All integer constants are a single kind of token, but 

the actual value (17, 42, …) will be an attribute
– Identifier tokens carry the actual identifier string as 

an attribute of the token “identifier”
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Typical Programming Language Tokens 

• Operators & Punctuation
– + - * / ( ) { } [ ] ; : :: < <= == = != !

…
– Each of these is a distinct lexical class

• Keywords
– if while for goto return switch void …
– Each of these is also a distinct lexical class (not a string)

• Identifiers
– A single ID lexical class, but parameterized by actual id

• Integer constants
– A single INT lexical class, but parameterized by int value

• Other constants (doubles, strings, …), etc.
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Principle of Longest Match

• In most languages, the scanner should pick the 
longest possible string to make up the next token if 
there is a choice

• Example
return iffy != dowhile;

should be recognized as 5 tokens

not more (i.e., not parts of words or identifiers, not ! 
and = as separate tokens)

23

RETURN ID(iffy) NEQ ID(dowhile) SCOLON
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Formal Languages & Automata 
Theory (in one slide)
• Alphabet: a finite set of symbols
• String: a finite, possibly empty sequence of symbols from 

an alphabet
• Language: a set, often infinite, of strings
• Finite specifications of (possibly infinite) languages

– Automaton – a recognizer; a machine that accepts all 
strings in a language (and rejects all other strings)

– Grammar – a generator; a system for producing all 
strings in the language (and no other strings)

• A particular language may be specified by many different 
grammars and automata

• A grammar or automaton specifies only one language
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Regular Expressions and FAs

• The lexical grammar (structure) of most programming 
languages can be specified with regular expressions

– Not always, e.g., FORTRAN and some others, but can 
usually cheat in the unusual corner cases

• Tokens can be recognized by a deterministic finite 
automaton (DFA)

– Can be either table-driven or built by hand based on 
lexical grammar

• Facts (er, theorems): any language that can be generated 
by a regexp can be recognized by the corresponding DFA; 
for every DFA, there is a set of regular expressions that 
generate the language it recognizes
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Regular Expressions

• Defined over some alphabet Σ
– For programming languages, commonly ASCII or 

Unicode
• If re is a regular expression, L(re) is the language (set 

of strings) generated by re
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Fundamental REs

re L(re ) Notes

a { a } Singleton set, for each a in Σ

ε { ε } Empty string

{ } Empty language

27

Æ
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Operations on REs

re L(re ) Notes
rs L(r)L(s) Concatenation
r | s L(r)    L(s) Combination (union)
r* L(r)* 0 or more occurrences 

(Kleene closure)

28

• Precedence: * (highest), concatenation, | (lowest)
• Parentheses can be used to group REs as needed

È
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Abbreviations

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (a|b|…|z) 1 character in given range

[abxyz] (a|b|x|y|z) 1 of the given characters

29

• The basic operations generate all possible regular 
expressions, but there are common abbreviations 
used for convenience.  Typical examples:
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Examples

re Meaning
+ single + character
! single ! character
= single = character
!= 2 character sequence
<= 2 character sequence
hogwash 7 character sequence
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More Examples

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*
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Abbreviations

• Many systems allow abbreviations to make writing 
and reading definitions easier

name ::= re

– Restriction: abbreviations may not be circular 
(recursive) either directly or indirectly
(otherwise it would no longer be a regular 
expression – would be a context-free grammar)
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Example

• Possible syntax for numeric constants

digit ::= [0-9]
digits ::= digit+
number ::= digits  ( . digits )?

( [eE] (+ | -)? digits ) ?

33CSE413 Winter 2019



Recognizing REs

• Finite automata can be used to recognize strings 
generated by regular expressions

• Can build by hand or automatically
– Not totally straightforward, but can be done 

systematically
– Tools like Lex, Flex, and JLex do this 

automatically from a set of REs read as input
– Even if you don’t use a FA explicitly, it is a good 

way to think about the recognition problem
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Finite State Automaton (FSA)

• A finite set of states
– One marked as initial state
– One or more marked as final states
– States sometimes labeled or numbered

• A set of transitions from state to state
– Each labeled with symbol from Σ, or ε

• Operate by reading input symbols (usually characters)
– Transition can be taken if labeled with current symbol
– ε-transition can be taken at any time

• Accept when final state reached & no more input
– Difference in a scanner: start scan in initial state at 

previous point in input. When a final state is reached, 
recognize the token corresponding to that final state

• Reject if no transition possible, or no more input and not in 
final state (DFA)
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Example: FSA for “cat”

36

a tc
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DFA vs NFA

• Deterministic Finite Automata (DFA)
– No choice of which transition to take under any 

condition
• Non-deterministic Finite Automata (NFA)

– Choice of transition in at least one case
– Accept - if some way to reach final state on given 

input
– Reject - if no possible way to final state
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FAs in Scanners

• Want DFA for speed (no backtracking)

• Conversion from regular expressions to NFA is easy

• There is a well-defined procedure for converting a 
NFA to an equivalent DFA (subset construction)
– See any formal language or compiler textbook for 

details (RE to NFA to DFA to minimized DFA)
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Example: DFA for hand-written scanner

• Idea: show a hand-written DFA for some typical 
programming language constructs
– Then use the DFA to construct a hand-written 

scanner
• Setting: Scanner is called whenever the parser needs 

a new token
– Scanner remembers current position in input file
– Starting there, use a DFA to recognize the longest 

possible input sequence that makes up a token, 
update the “current position”, and return that token
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Scanner DFA Example (1)

40

0

Accept LPAREN(
2

Accept RPAREN)
3

whitespace
or comments

Accept SCOLON;
4

Accept EOFend of input
1

CSE413 Winter 2019



Scanner DFA Example (2)

41

Accept NEQ! 6

Accept NOT7

5 =

other

Accept LEQ< 9

Accept LESS10

8 =

other
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Scanner DFA Example (3)

42

[0-9]

Accept INT12

11

other

[0-9]
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Scanner DFA Example (4)

• Strategies for handling identifiers vs keywords
– Hand-written scanner: look up identifier-like things in table of 

keywords to classify (good application of perfect hashing)
– Machine-generated scanner: generate DFA with appropriate 

transitions to recognize keywords
• Lots ’o states, but efficient (no extra lookup step)

43

[a-zA-Z]

Accept ID or keyword14

13

other

[a-zA-Z0-9_]
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Implementing a Scanner by Hand: 
Token Representation
• A token is a simple, tagged structure. Something like:

public class Token {
public int kind;            // token’s lexical class
public int intVal; // integer value if class = INT
public String id; // actual identifier if class = ID
// lexical classes (should really be an enum type)
public static final int EOF = 0; // “end of file” token
public static final int ID   = 1; // identifier, not keyword
public static final int INT = 2; // integer
public static final int LPAREN = 4;
public static final int SCOLN   = 5;  
public static final int WHILE   = 6;
// etc. etc. etc. …              // but use enums if you’ve got ‘em
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Simple Scanner Example

// global state and methods

static char nextch; // next unprocessed input character

// advance to next input char
void getch() { … }

// skip whitespace and comments
void skipWhitespace() { … }
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Scanner getToken() pseudocode

// return next input token
public Token getToken() {

Token result;

skipWhiteSpace();

if (no more input) {
result = new Token(Token.EOF); return result;

}

switch(nextch) {
case '(': result = new Token(Token.LPAREN); getch(); return result; 
case ‘)': result = new Token(Token.RPAREN); getch(); return result;
case ‘;': result = new Token(Token.SCOLON); getch(); return result;

// etc. …
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getToken() (2)
case '!':   // ! or !=

getch();
if (nextch == '=') {

result = new Token(Token.NEQ); getch(); return result;
} else {

result = new Token(Token.NOT); return result;
}

case '<':   // < or <=
getch();
if (nextch == '=') {

result = new Token(Token.LEQ); getch(); return result;
} else {

result = new Token(Token.LESS); return result;
}

// etc. …
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getToken() (3)

case '0': case '1': case '2': case '3': case '4': 

case '5': case '6': case '7': case '8': case '9': 

// integer constant

String num = nextch;

getch();

while (nextch is a digit) {

num = num + nextch; getch();

}

result = new Token(Token.INT, Integer(num).intValue());

return result;

…
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getToken (4)

case 'a': … case 'z':
case 'A': … case 'Z':   // id or keyword

string s = nextch; getch();
while (nextch is a letter, digit, or underscore) {

s = s + nextch; getch();
}
if (s is a keyword) {

result = new Token(keywordTable.getKind(s));
} else {

result = new Token(Token.ID, s);
}
return result;
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Alternatives

• Use a tool to build the scanner from the (regexp) 
grammar
– Often can be more efficient than hand-coded!

• Build an ad-hoc scanner using regular expression 
package in implementation language
– Ruby, Perl, Java, many others
– Suggest you use this for our project (good excuse 

to learn the Ruby regexp package)
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