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Agenda

Top-Down Parsing

* Predictive Parsers

* LL(k) Grammars

* Recursive Descent
Grammar Hacking

— Left recursion removal
— Factoring
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Basic Parsing Strategies (1)

* Bottom-up
— Build up tree from leaves
 Shift next input or reduce using a production

» Accept when all input read and reduced to start
symbol of the grammar

— LR(k) and subsets (SLR(k), LALR(k), ...)

remaining input
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Basic Parsing Strategies (2)

* Top-Down
— Begin at root with start symbol of grammar
— Repeatedly pick a non-terminal and expand
— Success when expanded tree matches input

/AN
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Top-Down Parsing

« Situation: have completed part of a leftmost derivation
S =>* wAa =>" wxy
« Basic Step: Pick some production
A=By B2 By
that will properly expand A
to match the input
— Want this to be

deterministic /? %?\ \
W X y
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Predictive Parsing

 |f we are located at some non-terminal A, and
there are two or more possible productions
A=a
A:=p
we want to make the correct choice by
looking at just the next input symbol

* |f we can do this, we can build a predictive

parser that can perform a top-down parse
without backtracking
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Sounds hard, but ...

* Programming language grammars are often
suitable for predictive parsing

« Typical example

stmt ;= id = exp ; | return exp ;
| if (exp ) stmt | while ( exp ) stmt

If the remaining unparsed input begins with
the tokens
IF LPAREN ID(X) ...

we should expand simt to an if-statement
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LL(k) Property

A grammar has the LL(1) property if, for all non-terminals
A, when there are two productions

Ai=qa
A:=0
iIn the grammar, then:

FIRST(a) N FIRST(B) = @

(FIRST(a) = set of terminals that begin any possible string
derived from a.)

— Assumption, neither a nor 3 can expand to €. There are ways to
handle this if it happens, but we will avoid the issue

« |If a grammar has the LL(1) property, we can build a
predictive parser for it that uses 1-symbol lookahead
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LL(k) Parsers

* An LL(k) parser
— Scans the input Left to right
— Constructs a Leftmost derivation
— Looking ahead at most k symbols

« 1-symbol lookahead is enough for many realistic
programming language grammars

— LL(k) for k>1 is very rare in practice
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LL vs LR (1)

« Table-driven parsers for both LL and LR can be
automatically generated by tools

« LL(1) has to make a decision based on a single non-
terminal and the next input symbol

 LR(1) can base the decision on the entire left context
as well as the next input symbol
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LL vs LR (2)

-. LR(1) is more powerful than LL(1)
— Includes a larger set of grammars
But
— It is easier to write a LL(1) parser by hand

— There are some very good LL parser tools out
there (ANTLR, JavaCC, ...)
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Recursive-Descent Parsers

« An advantage of top-down parsing is that it is easy to
iImplement by hand

« Key idea: write a function (procedure, method)
corresponding to each non-terminal in the grammar

— Each of these functions is responsible for

matching the next part of the input with the non-
terminal it recognizes
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Example: Statements

Grammar Method for this grammar rule
stmt ::=id = exp ; // parse stmt ;= id=exp; | ...
| return exp ; void stmt( ) {

| if ( exp ) stmt

| while ( exp ) stmt switch(nextToken) {

RETURN: returnStmt(); break;
IF: ifStmt(); break;
WHILE: whileStmt(): break:
ID: assignStmt(); break;
}
}
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Example (cont)

I/l parse while (exp) stmt
void whileStmt() {
I/ skip “while ("
getNextToken();
getNextToken();

// parse condition
exp();

Il skip ©)”
getNextToken();

/[ parse stmt
stmt();

/[ parse return exp ;

void returnStmt() {
/Il skip “return”
getNextToken();

/[ parse expression
exp();

Il skip “;”
getNextToken();

CSE 413 Winter 2019

14



Invariant for Parser Functions

« The parser functions need to agree on where they
are in the input

« Useful (and typical) invariant: WWhen a parser function
Is called, the current token (next unprocessed piece
of the input) is the token that begins the expanded
non-terminal being parsed

— Corollary: when a parser function terminates, it
must have completely consumed input
corresponding to that non-terminal
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Possible Problems

« Two common problems for recursive-descent (and
LL(1)) parsers:

— Leftrecursion(eg., E::=E + T |..))

— Common prefixes on the right hand side of
productions
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Left Recursion Problem

e Grammar rule e Code

expr ..:= expr + term /I parse expr ::= ...
| term void expr() {
expr();
if (current token is PLUS) {
getNextToken();

term();

* And the bug is??7??
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Left Recursion Problem

 If we code up a left-recursive rule as-is, we get an
infinite recursion

* Non-solution: replace with a right-recursive rule

expr ;= term + expr | term

— Why isn’t this the right thing to do?
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One Left Recursion Solution

* Rewrite using right recursion and a new non-
terminal

Original: expr ::= expr + term | term
* New:

expr .= term exprtail

exprtail ;= + term exprtail | ¢
* Properties

— No infinite recursion if coded up directly
— Maintains left associatively (required)
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Another Way to Look at This

* QObserve that
expr .= expr + term | term
generates the sequence
term + term + term + ... + term
* We can sugar the original rule to match
expr .= term { + term }*
* This leads directly to parser code

— But need to fudge things to respect the original
precedence/associativity
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Code for Expressions (1)

/[ parse /[ parse
/I expr = term { + term }* /[ term ::=factor { * factor }*
void expr() { void term() {

term(); factor();

while (next symbol is PLUS) { while (next symbol is TIMES) {

/| consume PLUS // consume TIMES
getNextToken(); getNextToken();
term(); factor();
} }
} }
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Code for Expressions (2)

/[ parse
/[ factor ::=int|id | ( expr) case ID:
process identifier;

void factor() { // consume ID

switch(nextToken) { getNextToken();
break;
case INT:
process int constant; case LPAREN:
// consume INT // consume LPAREN
getNextToken(); getNextToken();
break; expr();
/l consume RPAREN
getNextToken();
}
}
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Left Factoring

« If two rules for a non-terminal have right-hand sides

that begin with the same symbol, we can't predict
which one to use

« “Official” solution: Factor the common prefix into a
separate production
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Left Factoring Example

* QOriginal grammar:

ifStmt .= if ( expr ) stmt
| if ( expr ) stmt else stmt

* Factored grammar:

ifStmt .= if ( expr ) stmt ifTail
ifTail ;= else stmt | ¢
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Parsing if Statements

» But it's easiest to just /I'parse
code up the “else /[ if (expr) stmt [ else stmt ]
matches closest if” void ifStmt() {

rule direCtly getNextToken();

getNextToken();

expr();

getNextToken();

stmt();

if (next symbol is ELSE) {
getNextToken();
stmt();
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Top-Down Parsing Concluded

« Works with a somewhat smaller set of grammars

than bottom-up, but can be done for most sensible
programming language constructs

 If you need to write a quick-n-dirty parser, recursive
descent is often the method of choice
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