CSE 413
Programming Languages &
Implementation

Hal Perkins
Winter 2019
Top-Down and Recursive-Descent Parsing

CSE 413 Winter 2019

Agenda

Top-Down Parsing

* Predictive Parsers

* LL(k) Grammars

* Recursive Descent
Grammar Hacking

— Left recursion removal
— Factoring

CSE 413 Winter 2019

Basic Parsing Strategies (1)

* Bottom-up
— Build up tree from leaves
 Shift next input or reduce using a production

» Accept when all input read and reduced to start
symbol of the grammar

— LR(k) and subsets (SLR(k), LALR(k), ...)

remaining input

CSE 413 Winter 2019 3

Basic Parsing Strategies (2)

* Top-Down
— Begin at root with start symbol of grammar
— Repeatedly pick a non-terminal and expand
— Success when expanded tree matches input

/AN

CSE 413 Winter 2019

Top-Down Parsing

« Situation: have completed part of a leftmost derivation
S =>* wAa =>" wxy
« Basic Step: Pick some production
A=By B2 By
that will properly expand A
to match the input
— Want this to be

deterministic /? %?\ \
W X y

CSE 413 Winter 2019 5

Predictive Parsing

 |f we are located at some non-terminal A, and
there are two or more possible productions
A=a
A:=p
we want to make the correct choice by
looking at just the next input symbol

* |f we can do this, we can build a predictive

parser that can perform a top-down parse
without backtracking

CSE 413 Winter 2019 6

Sounds hard, but ...

* Programming language grammars are often
suitable for predictive parsing

« Typical example

stmt ;= id = exp ; | return exp ;
| if (exp) stmt | while (exp) stmt

If the remaining unparsed input begins with
the tokens
IF LPAREN ID(X) ...

we should expand simt to an if-statement

CSE 413 Winter 2019

LL(k) Property

A grammar has the LL(1) property if, for all non-terminals
A, when there are two productions

Ai=qa
A:=0
iIn the grammar, then:

FIRST(a) N FIRST(B) = @

(FIRST(a) = set of terminals that begin any possible string
derived from a.)

— Assumption, neither a nor 3 can expand to €. There are ways to
handle this if it happens, but we will avoid the issue

« |If a grammar has the LL(1) property, we can build a
predictive parser for it that uses 1-symbol lookahead

CSE 413 Winter 2019

LL(k) Parsers

* An LL(k) parser
— Scans the input Left to right
— Constructs a Leftmost derivation
— Looking ahead at most k symbols

« 1-symbol lookahead is enough for many realistic
programming language grammars

— LL(k) for k>1 is very rare in practice

CSE 413 Winter 2019

LL vs LR (1)

« Table-driven parsers for both LL and LR can be
automatically generated by tools

« LL(1) has to make a decision based on a single non-
terminal and the next input symbol

 LR(1) can base the decision on the entire left context
as well as the next input symbol

CSE 413 Winter 2019 10

LL vs LR (2)

-. LR(1) is more powerful than LL(1)
— Includes a larger set of grammars
But
— It is easier to write a LL(1) parser by hand

— There are some very good LL parser tools out
there (ANTLR, JavaCC, ...)

CSE 413 Winter 2019

11

Recursive-Descent Parsers

« An advantage of top-down parsing is that it is easy to
iImplement by hand

« Key idea: write a function (procedure, method)
corresponding to each non-terminal in the grammar

— Each of these functions is responsible for

matching the next part of the input with the non-
terminal it recognizes

CSE 413 Winter 2019 12

Example: Statements

Grammar Method for this grammar rule
stmt ::=id = exp ; // parse stmt ;= id=exp; | ...
| return exp ; void stmt() {

| if (exp) stmt

| while (exp) stmt switch(nextToken) {

RETURN: returnStmt(); break;
IF: ifStmt(); break;
WHILE: whileStmt(): break:
ID: assignStmt(); break;
}
}

CSE 413 Winter 2019 13

Example (cont)

I/l parse while (exp) stmt
void whileStmt() {
I/ skip “while ("
getNextToken();
getNextToken();

// parse condition
exp();

Il skip ©)”
getNextToken();

/[parse stmt
stmt();

/[parse return exp ;

void returnStmt() {
/Il skip “return”
getNextToken();

/[parse expression
exp();

Il skip “;”
getNextToken();

CSE 413 Winter 2019

14

Invariant for Parser Functions

« The parser functions need to agree on where they
are in the input

« Useful (and typical) invariant: WWhen a parser function
Is called, the current token (next unprocessed piece
of the input) is the token that begins the expanded
non-terminal being parsed

— Corollary: when a parser function terminates, it
must have completely consumed input
corresponding to that non-terminal

CSE 413 Winter 2019 15

Possible Problems

« Two common problems for recursive-descent (and
LL(1)) parsers:

— Leftrecursion(eg., E::=E + T |..))

— Common prefixes on the right hand side of
productions

CSE 413 Winter 2019

16

Left Recursion Problem

e Grammar rule e Code

expr ..:= expr + term /I parse expr ::= ...
| term void expr() {
expr();
if (current token is PLUS) {
getNextToken();

term();

* And the bug is??7??

CSE 413 Winter 2019

17

Left Recursion Problem

 If we code up a left-recursive rule as-is, we get an
infinite recursion

* Non-solution: replace with a right-recursive rule

expr ;= term + expr | term

— Why isn’t this the right thing to do?

CSE 413 Winter 2019

18

One Left Recursion Solution

* Rewrite using right recursion and a new non-
terminal

Original: expr ::= expr + term | term
* New:

expr .= term exprtail

exprtail ;= + term exprtail | ¢
* Properties

— No infinite recursion if coded up directly
— Maintains left associatively (required)

CSE 413 Winter 2019 19

Another Way to Look at This

* QObserve that
expr .= expr + term | term
generates the sequence
term + term + term + ... + term
* We can sugar the original rule to match
expr .= term { + term }*
* This leads directly to parser code

— But need to fudge things to respect the original
precedence/associativity

CSE 413 Winter 2019

20

Code for Expressions (1)

/[parse /[parse
/I expr = term { + term }* /[term ::=factor { * factor }*
void expr() { void term() {

term(); factor();

while (next symbol is PLUS) { while (next symbol is TIMES) {

/| consume PLUS // consume TIMES
getNextToken(); getNextToken();
term(); factor();
} }
} }

CSE 413 Winter 2019 21

Code for Expressions (2)

/[parse
/[factor ::=int|id | (expr) case ID:
process identifier;

void factor() { // consume ID

switch(nextToken) { getNextToken();
break;
case INT:
process int constant; case LPAREN:
// consume INT // consume LPAREN
getNextToken(); getNextToken();
break; expr();
/l consume RPAREN
getNextToken();
}
}

CSE 413 Winter 2019

22

Left Factoring

« If two rules for a non-terminal have right-hand sides

that begin with the same symbol, we can't predict
which one to use

« “Official” solution: Factor the common prefix into a
separate production

CSE 413 Winter 2019

23

Left Factoring Example

* QOriginal grammar:

ifStmt .= if (expr) stmt
| if (expr) stmt else stmt

* Factored grammar:

ifStmt .= if (expr) stmt ifTail
ifTail ;= else stmt | ¢

CSE 413 Winter 2019

24

Parsing if Statements

» But it's easiest to just /I'parse
code up the “else /[if (expr) stmt [else stmt]
matches closest if” void ifStmt() {

rule direCtly getNextToken();

getNextToken();

expr();

getNextToken();

stmt();

if (next symbol is ELSE) {
getNextToken();
stmt();

CSE 413 Winter 2019

25

Top-Down Parsing Concluded

« Works with a somewhat smaller set of grammars

than bottom-up, but can be done for most sensible
programming language constructs

 If you need to write a quick-n-dirty parser, recursive
descent is often the method of choice

CSE 413 Winter 2019

26

