Logical Reasoning

Goal:  to have a computer automatically perform deduction
or prove theorems |

First, we need a language in which to communicate to the
machine.

axioms
theorems
hypotheses
rules
Languages
Propositional Calculus
(or propositional logic)

1st Order Predicate Calculus



Propositional Logic
r'ropositions: Statements that are either true or false.
P: LISP runs on IBM PCs.

Q: IBM PCs are computers
R: Prolog runs on IBM PCs.

Propositional Logic Symbols or Connectives

A and
vV  or
— not

— implications

_P/\Q
PAR—- Q.
_IR/\P



Predicate Calculus

Some formulas with meanings that express a set of facts

1
2)
3)
4)
5)
6)
7)

8)
9)

man (Marcus)

Pompeian (Marcus)

born (Marcus, 40) [40 A.D.]
Vx: man (x) — mortal (x)

Vx: Pompeian (x) — died x, 79)

erupted (volcano, 79)

Vx: Vt1: Vto: mortal(x) A born(x,t1) A gt(tz2-t1, 150) —
dead(x,t2)

now = 1994

Vx: Vt: [alive(x,t) — —dead(x,t)] A
| —dead(x,t) — alive(x,t)]

10) Vx: Vii: Vto: died(x,t1) A gt(t2, t1) — dead(}ﬁ,tz)



To prove: dead(Marcus, now)

One way |
Pompeian(Marcus) vx: Pomp‘eian(x) — died(x, 79)
died(Marcus, 79) gt(now, 79)

died(Marcus, 79) A gt{now, 79)

Vx: Vtl: Vt2: died(x,t1) A gt(t2, t1) — dead(x,t2)

dead(Marcus, now)

This i1s a direct proof.



X=>Y
Proof by Contradiction | , Y -p 9 x

—dead(Marcus, now)

Vx: Vtl: Vi2: died(x,t1) A gt(t2, t1) — dead(x,t2)

Vty: —[died(Marcus, t;) A gt(now, t;)]

Vty: —died(Marcus, t1) v —gt(now, t;)

died(Marcus, 79)*

—gt(now, 79) gt(now, 79)

® contradiction

*assume we already proved this separately



Resolution Theorem Provers for Predicate Calculus

| Given: F:

a database of axioms (set of formulas)

S:  a conjecture (a formula)

Prove: F: Iogically implies §

Technique

@ Construct —S: negated conjecture.

o | Show F' = F u {—S} is not satisfiable

(leads only to contradiction)

Since we are assuming F is satisfiable, we can conclude

ﬂ{'ﬁS} or S



Part I — Preprocessing to express in homogeneous form

1) Eliminate =’s
m}’ v(=A, B)
Running Example
+ Vx Vy (Alx) 2 —-C(x,y)) 2 —Vx 3z A(P(x,2), R(2))
Vx Vy (V(=A(x), =C(xy)) = =Vx 3z A(P(x,2), R(2))

Vx Vy v(=v(=Ax), ~Clxy)), ~Vx 3z ~(P(x,z), R(z))

2) Redyce the scope of each — to apply to at most one
predicate, by applying rules.

1. Demorgan’s Laws
—v(x1, ..., Xa) = A(—X1, ..., —Xn)
—AX1, oney Xn) = V(—X1, ...y —Xn)
2. —(—x) =x
3. —=(VxA)= Ix(=A)
4. —(IxA) = Vx(—A)



3)

Ex.

Vx Vy v( =v(=AK), ~Clxy)), =¥x Iz A(P(x,2), R(2)))
Vx Vy v AlAlx), Clxy)), =Vx 3z A(P(x,2), R(z)))
Vx Vy v( A(A(), Clxy)), 3x =3z A(P(x,2), R(2)))
Vx Vy v( AA®), Clxy)), 3x Vz =A(P(x,2), R(z)))

Vx Vy v( A(Alx), Cx,y)), 3x Vz v(=P(x,2), —R(z)))
e ———
Standardize Variables

Rename variables so that each quantifier binds a unique
variable

Vx Vy v( A(A®), Clxy)), 3x Vz v(=P(x,z), =R(2)))
- o ‘

(this x is in the scope of the
other one, rename it)

Vx ¥y v AA®), Clxy)), Fu ¥z v(=P(u,2), ~R(2)))
L . 4.



4. Eliminate existential qualifiers by introducing Skolem
functions. '

Ex. ngz dz P{x, 4 Z)

Want to eliminate 3z.
—-—

Variable z depends on x and y, since 3z is within the
scope of VxVy, so we can consider z a function of x and

e
—_
Choose an arbitrary unused function name f and replace

z by t{x, y) eliminating the 3.

L
VxVy P(x, v, f(x, y))
m
Interpretation:

f(x, y) specifies for any x, y a value of z that exists
and satisfies P(x, y, 2z)

¥x Yy v( A(Alx), C(x,y)),% vz v(_—:P%z}, —R(z))
Vx Vy v( A(AR), Clx,y)), Vz v(ﬂP(Iiixi m',z), —=R(z))

Note: now we can move the ¥z forward.

Vx Vy Vz v( A(Alx), Clxy)), v(—=P(g(x, v),2), =R(z)))



5.  Rewrite the result in Conjunctive Normal Form.

Conjunctive Normal Form
Alxq ...i'xna where the x; are:
@ atomic formulas
® negated atomic formulas
® disjunctions
Do this by repeatedly applying the rule:
v(x1, A(x2, oo Xn) =
AL, X2, ooy VI, X))
Example:VxVyVz v(A(AX), Clxy)), V(=P(g(x, v),2), =R(2)))
To see the transformation, think of this as
ACv—=Pv-=R
=(ACv—-P)v-R
=(Av—-P)(Cv—-P)v-R
=(A v =P v =R)(C v-=Pv-—=R)

Vx Vy Jz /\( V(A(X), ﬂP(g(Xs Y))Z)! _‘R(Z)))
v(Clxy)), =P(gk, y),2), —R(2)))

6.  Since all variables are now universally quantified,
eliminate V_as understood.

A(V(A), =P(g(x, v),2), =R(2)), V(C{xy)), =P(g(x, v),2), —=R(2)))



The input formula(s) are now expressed in a kind of normal
form call the clause form equivalent of the original expression

Def (clause form equivalent)

a /iteral 1s an atom or the negation of an atom.

a clause 1s a disjunctionof literals

a formula is a conjunction of clauses

We can think of the clause form equivalent as a se of clauses,
and each clause as a sez of literals.

Implicit disjunction
{Clause 1. { A(x),—P(g(x, y),2),—R(2)},
Clause 2. {C(x, y), -P(g(x, y), z), =R(z)}}

The formula is the set consisting of Clause 1 and Clause 2,
with implicit conjunction.



Steps in Proving a Conjecture

I.  Find the clause form equivalent C of

F'=Fu=S (Fisthe axiom, =S the conjecture)

II. Try to find the new clauses that are logically implied by
C. | E—

If NIL is one of the clauses, then F” is unsatisfiable and
S is proved.



Resolution Procedure for Propositional Logic
1) Convert F to clause form.

2)  Negate S, convert to clause form, and add in the clause
form of F to get a set of clauses.

«® 3) Repeart until a contradiction or no progress.

a) select two “parent” clauses.

b) produce their resolvent.
Let Ci=LivIov.. v Ly
Co=Li'vIiyv.. v Ly

Then resolvent(C1, Ca) =
EEE————

leLgv...anle’sz’v...an

else resolvent(Cq, Cp) =

lesz...anvL1’vL2’v...an

with nothing removed

c) if resolvent = NIL we are done; else add it to the
set. |
-

’

’



Propositional Logic Example

F: PvQ,P—>Q, Q>R
S: R

-—
Clause form of F U =S

P —P — R, =R
‘{- v Q, nl’ v Q, =Q.v -]
D @ ©)] @
O &@ ®
=

®&®=—-Q®
L

® & ® = NIL
.

done

/2



In propositional logic, we just look for some literal L in C1
and its negation —L in C;

To find resolvents in predicate logic, we need a matching

. * _
Erocedure that compares 2 literals and determines

whether there 1s a set of substitutions that makes them
identical. This procedure is called unification.

Example:

Il

eats(Tofn, X)

Ch= eats(Tom, ice cream)
Substituting “ice cream” for variable x in C1 gives
C1’ = eats(Tom, ice cream) = C3

The subsitituion is ice cream/x



Proof by Contradiction using Unification

Given:

Prove:

Negation:

- Ix—(Plx) - Q&)

Vx P(x) - R(x)
Vx R(x) - Qfx)

(5P, R(x)}

"‘_IRZ, r4
(—R(z), Q(z)]

Vx P(x) = Qx)
—Vx P(x) — Q(x)

dx —(—P(x) v Qx))

il 2 Q)

P(a) A =Q(a)

(~P(), RE)

(~P(), QW) (Pa)] ' o2 m ke

(a/x)



Given C1 and Cy, the computer tries to find all possible
resolvents. |

If one resolvent is NIL, then Cj and C» cannot together be
satisfied.

Ex.

€ = {P(x)}
Cz = {—|P(a)}

Cs = NIL

1.e. Vx P(x) and —P(a) are inconsistent

>trivia.]_ly unifiable A = (a,x) a / X

A}



Binary Resolution Procedure Restated

0. S = axioms U —theorem
i. Let S be a set of clauses
S={Cy, Cy ...,Cn}. R1(§)=S.1=1.

2. Apply the resolution process to each pair C;, C,i#jin
Ri(S).

3. Place any resolvents in RES
R;i+1(S) = Ri(S) U RES
=i+l |

go to 2

If NIL is ever implied, STOP and succeed. The proof is the
refutation graph leading from NIL through its ancestors, up
to the original . If we run out of time, STOP and say

NO PROOF FOUND
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Exarnple

AXioms m clause form: ' —
- man(Marcus)

. Pompcian(Mamus)

- = Pompeian(x]) v Roman(x 1)

- rulen(Caesar)

!
2
3
4
5. = Roman(x2) v lovalta(x2, Caesar) v hate(x2, Caesar)
6. loyalto(x3, f1(x2))

-

8

+ = man(x4) y — ruler(vily o Uyassassinate(x4, y1) — loyalto(x4, yl)
- YassassmaeMarcus, Caesar) ‘

(a)

Prove: hate(Marcus, Caesar) — hate(Marcus, Cazsar) 5

Marcus/x2

2 = Roman(Mareus) v loyaito(Marcus, Caesar)
! Marcug/x }

- Pompcian(‘Marcus) V loyalto(Marcys, Caesar) 2

7 loyalto(Marcys, Caesar)

Marcus/x4, Caesarry|

1 \-ﬂmuﬂm} —ruler(Caesar) v — Uyassassinata(Marcus, Caesar)

—rulen(Caesar) v — u-ya._ssassinaLcMaraxs. Caesar) : 4

\/

— Uyassassinate(Marcys, Cazsar) 8

O
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The Monkey-Bananas Proble_m (Simplified)
Axioms

1)

2)

3)

4)

5)

Vx Vs{=ONBOX(s)—>AT(box, x, pushbox(x,s))}

For each position x and state s, if the monkey isn’t on
the box in state s, then the box will be pushed to position
x and the new state is pushbox(x,s).

Vs{ONBOX(climbbox(s))}

For all states s, the monkey will be on the box in the
state achieved by applying climbbox to s.

Vs{ONBOX(s) A AT(box, ¢, s) — HB(grasp(s))}

For all states s, if the monkey is on the box and the box
18 at position c in state s, then HB is true of the state
attained by applying grasp to s.

VxVs{AT(box, x, s) = AT(box, x, climbbox(s))}

The position of the box does not change when the
monkey climbs on it, but the state does.

—ONBOX(s,)

i



Conjecture Negation
ds HB(s) Vs—HB(s) or =HB(s)
Refutation Graph |

(ax. 3)
~HB(t) {=ONBOX(s), —AT(box, c, s), HB(grasp(s))}
- grasp(s)lt
{—.ONBOX(s) —LAT(box S, s)) (ax. 2)
pa— = {ONBOX(climbbox(s))}

climbbox(s)ls

{ =AT(box, c, climbbox(s))} (ax. 4)

i {=AT(box, x, s), AT (box, x, climbbox(s))}
clx

{ =AT(box, c, s)} (ax. 1)
{ONBOX(s), AT(box, x, pushbox(x, 4))}
clx |
pushbox(c, s)!s
(ax. 5)
ONBOX(s) —-ONBOX(s,)
NIL
Sy
If we change the conjecture to {=HB(s), HB(s)}, the result
becomes i e=mmn

HB(grasp(climbbox(pushbox(c,s,)))

19



