CSE 421
Introduction to Algorithms

Depth First Search and Strongly Connected Components

Lemma 2

All members of an SCC are descendants of its root.

Proof:

- all members are reachable from all others
- so, all are reachable from its root
- all are unvisited when root is visited
- so, all are descendants of its root (Lemma 1)

Lemma 3

If v is not a root, then v has an exit.
Proof:

- let r be root of v's SCC
$-r$ is a proper ancestor of v (Lemma 2)
- let x be the first vertex that is not a descendant of v on a path $v \rightarrow r$.
$-x$ is an exit
Cor: If v has no exit, then v is a root.
NB: converse not true; some roots do have exits 18

Lemma 4

If r is the first root from which dfs returns, then r has no exit
Proof:

- Suppose x is an exit
- let z be root of x's SCC
- r not reachable from z, else in same SCC
- \#z $\leq \# x$ (z ancestor of x; Lemma 2)
$-\# x<\# r$ (x is an exit from r)
$-\# z<\# r$, no $z \rightarrow r$ path, so return from z first
- Contradiction

