CSE 421:
Introduction to Algorithms

Dynamic Programming

Dynamic Programming

Examples: 5.10, 6.8
Today:
Example 1 — Licking Stamps
General Principles
Example 2 — Knapsack
Tomorrow
Example 3 — Sequence Comparison

CSE 421, '00, Ruzzo

How to Lick 27¢

#of5¢ | #0of4¢ | #of 1¢ | Total
Stamps | Stamps | Stamps | Number

5 0 2 7
4 1 3 8
3 3 0 6

Moral: Greed doesn't pay

CSE 421, '00, Ruzzo

“Dynamic Programming”

Program — A plan or procedure for dealing
with some matter - webster's New world Dictionary

CSE 421, '00, Ruzzo

Licking Stamps

Given:

Large supply of 5¢, 4¢, and 1¢ stamps
An amount N

Problem: choose fewest stamps totaling N

CSE 421, '00, Ruzzo

A Simple Algorithm

At most N stamps needed, etc.
fora=0,...,N{
forb=0,...,N{
forc=0, ..., N{
if (5a+4b+c == N && a+b+c is new min)
{retain (a,b,c);}}}
output retained triple;

Time: O(N?)

(Not too hard to see some optimizations, but we're after bigger fish...)

CSE 421, '00, Ruzzo

Better Idea

Theorem: If last stamp licked in an optimal
solution has value v, then previous stamps
form an optimal solution for N-v.

Proof: if not, we could improve the solution
for N by using opt for N-v.

M(i) = mingmgjig
+M(i-1)

i=0

i25 S

,—24|:| where M(i) = min number
=1 of stamps totaling i¢

CSE 421, '00, Ruzzo

Another New ldea:
Avoid Recomputation

Tabulate values of solved subproblems
Top-down: “memoization”

Bottom up:
o =0
fori=0,..,Ndo M(i)=min gﬁ%:ig =20
MY izl

Time: O(N)

New ldea; Recursion

i=0
o= i3 8
+M(i-1) =1
27
T
26

22 23

17 18 21 18 19 22 21 22 25

Time: > 3N/s

CSE 421, '00, Ruzzo

Finding How Many Stamps

[i Jo[a[2]3]4]5]6][7]8]9]10[11]12[13]14]
[M@|o] 1][2(3§1)1]2(3)2 \

1+Min(3,1,3) = 2

CSE 421, '00, Ruzzo

CSE 421, '00, Ruzzo

Finding Which Stamps:

Trace-Back
[i Jo[1][2]3]4[5]6]7[8]9]10]11]12][13]14]
[M()[o] 1 2] 3f1)1[2{3}2

"N/

1+Min(3,1,3) = 2

CSE 421, '00, Ruzzo

Complexity Note

O(N) is better than O(N3) or O(3N/5)

But still exponential in input size
(log N bits)

(E.g., miserably slow if N is 64 bits.)

Note: can do in O(1) for 5¢, 4¢, and 1¢ but not
in general. See “NP-Completeness” later

CSE 421, '00, Ruzzo

Elements of Dynamic

Programming The Knapsack Problem (8 5.10)

What feature did we use?

Given positive integers W, wy, Wy, ..., W,
What should we look for to use again?

Find a subset of the w/’s totaling exactly W.

. . . (Like stamp problem, but limited supply of each.)
Optimal Substructure
Optimal solution contains optimal subproblems Motivation: simple 1-d abstraction of packing
“Repeated Subproblems”

boxes, trucks, VLSI chips, ...
The same subproblems arise in various ways

CSE 421, '00, Ruzzo

13 CSE 421, '00, Ruzzo

