CSE 421:

Introduction to Algorithms

Dynamic Programming

Dynamic Programming

- Examples: 5.10, 6.8
- Today:
- Example 1 - Licking Stamps
- General Principles
- Example 2 - Knapsack
- Tomorrow
- Example 3 - Sequence Comparison

CSE 421, '00, Ruzzo

"Dynamic Programming"

Program - A plan or procedure for dealing with some matter - Webster's New World Dictionary

Licking Stamps

- Given:
= Large supply of $5 ¢, 4$, and $1 ¢$ stamps
- An amount N
- Problem: choose fewest stamps totaling N

How to Lick 27¢

\# of $5 ¢$ Stamps	\# of 4¢ Stamps	\# of 1¢ Stamps	Total Number
5	0	2	7
4	1	3	8
3	3	0	6

Moral: Greed doesn't pay
CSE 421, '00, Ruzzo

A Simple Algorithm

- At most N stamps needed, etc.
for $\mathrm{a}=0, \ldots, \mathrm{~N}$ \{
for $b=0, \ldots, N\{$
for $\mathrm{C}=0, \ldots, \mathrm{~N}\{$ if $(5 a+4 b+c==N \& \& a+b+c$ is new min $)$ \{retain (a,b,c);\}\}\}
output retained triple;
- Time: $\mathrm{O}\left(\mathrm{N}^{3}\right)$
(Not too hard to see some optimizations, but we're after bigger fish...)

Better Idea

Theorem: If last stamp licked in an optimal solution has value v , then previous stamps form an optimal solution for $\mathrm{N}-\mathrm{v}$.
Proof: if not, we could improve the solution for N by using opt for $\mathrm{N}-\mathrm{v}$.

CSE 421, '00, Ruzzo

New Idea: Recursion

Time: $>3^{N / 5}$
CSE 421, '00, Ruzzo

Another New Idea: Avoid Recomputation

- Tabulate values of solved subproblems
- Top-down: "memoization"
- Bottom up:

$$
\text { for } \mathrm{i}=0, \ldots, \mathrm{~N} \text { do } \quad M(i)=\min \left\{\begin{array}{ll}
0 & i=0 \\
1+M(i-5) & i \geq 5 \\
1+M(i-4) \\
1+M(i-1) & i \geq 1
\end{array}\right\} \text {; }
$$

- Time: $\mathrm{O}(\mathrm{N})$

CSE 421, '00, Ruzzo

Finding How Many Stamps

$1+\operatorname{Min}(3,1,3)=2$

Finding Which Stamps:
Trace-Back

CSE 421, '00, Ruzzo

Complexity Note

- $\mathrm{O}(\mathrm{N})$ is better than $\mathrm{O}\left(\mathrm{N}^{3}\right)$ or $\mathrm{O}\left(3^{\mathrm{N} / 5}\right)$
- But still exponential in input size ($\log \mathrm{N}$ bits)
(E.g., miserably slow if N is 64 bits.)
- Note: can do in O(1) for $5 ¢, 4 ¢$, and $1 ¢$ but not in general. See "NP-Completeness" later

Elements of Dynamic Programming

- What feature did we use?
- What should we look for to use again?
- "Optimal Substructure"

Optimal solution contains optimal subproblems

- "Repeated Subproblems"

The same subproblems arise in various ways

CSE 421, '00, Ruzzo

The Knapsack Problem (§ 5.10)

Given positive integers $W, w_{1}, w_{2}, \ldots, w_{n}$, Find a subset of the w_{i} 's totaling exactly W .
(Like stamp problem, but limited supply of each.)
Motivation: simple 1-d abstraction of packing boxes, trucks, VLSI chips, ...

