CSE 421
Introduction to Algorithms
Winter 2000
The Network Flow Problem
Csesal,woonemo

Net Flow: Formal Definition	
Given: A digraph $G=(V, E)$ Two vertices s,tin V (source \& sink) A capacity $\mathrm{c}(\mathrm{u}, \mathrm{v}) \geq 0$ for each $(u, v) \in E$ 	Find:
	A flow function $\mathrm{f}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{R}$ s.t., for all u, v :
	$-f(u, v) C(u, v) \quad$ [apanaly Constand
	Maximizing total fow $\mid f=\{(f, V)$

Example: A Flow Function

- Not shown: $f(\mathrm{u}, \mathrm{v})$ if ≤ 0
Note: max m is a flow function, with $\mid \mathrm{fl}=4$

The Network Flow Problem

- How much stuff can flow from s to t?

CSE 421, w oo, Ruzzo

Example: A Flow Function

Sreed Revisited

The residual network (w.r.t. f) is the graph $G_{f}=\left(V, E_{f}\right)$, where

$$
E_{f}=\left\{(u, v) \mid c_{f}(u, v)>0\right\}
$$

An augmenting path (w.r.t. f) is a simple $s \rightarrow t$ path in G_{f}.

CSE 421, W o0, Ruzzo

Lemma 1
If f admits an augmenting path p, then f is
not maximal.
Proof: "obvious" -- augment along p by c_{p},
the min residual capacity of p's edges.
CSEE22, woo, Ruro

Ford-Fulkerson Method

While G_{f} has an augmenting path, augment

- Questions:
"Does it halt?
"Does it find a maximum flow?
"How fast?

CSE 421, W 00, Ruzzo

Lemma 2

- For any flow f and any cut S, T,
" the net flow across the cut equals the total flow, i.e., $|f|=f(S, T)$, and
" the net flow across the cut cannot exceed the capacity of the cut, i.e. $f(\mathrm{~S}, \mathrm{~T}) \leq \mathrm{c}(\mathrm{S}, \mathrm{T})$

- Corollary:

Max flow \leq Min cut

$(3) \Rightarrow(1)$
$\mathrm{S}=\{\mathrm{u} \mid \exists$ an augmenting path from s to u$\}$
$T=V-S ; s \in S, t \in T$
For any (u, v) in $S \times T, \exists$ an augmenting path froms to u, but not to v.
$\therefore(u, v)$ has 0 residual capacity:

$$
\begin{array}{ll}
(u, v) \in E \Rightarrow \text { saturated } & f(u, v)=c(u, v) \\
(v, u) \in E \Rightarrow \text { no flow } & f(u, v)=f(v, u)=0
\end{array}
$$

This is true for every edge crossing the cut, i.e.
$|f|=f(S, T)=\sum_{u \in S} \sum_{v \in T} f(u, v)=$

Edmonds-Karp Algorithm	
- Use (via	
- Time	
CSE 27, W wo, Ruzo	${ }^{23}$

Max Flow / Min Cut Theorem

For any flow f , the following are equivalent
(1) $|f|=c(S, T)$ for some cut S, T (a min cut)
(2) f is a maximum flow
(3) f admits no augmenting path

Proof:

$(1) \Rightarrow(2)$: corollary to lemma 2
$(2) \Rightarrow(3)$: lemma 1
CSE 421, W 00, Ruzzo

Lemma 27.8
 (Alternate Proof)

Let f be a flow, G_{f} the residual graph, and p a shortest augmenting path. Then no vertex is closer to s after augmentation along p.

Proof: Augmentation only deletes edges, adds back edges

Theorem 27.9

The Edmonds-Karp Algorithm performs $\mathrm{O}(\mathrm{mn})$ flow augmentations

Proof:
$\{u, v\}$ is critical on augmenting path p if it's closest to s having min residual capacity won't be critical again until farther from s so each edge critical at most n times
CSE 421, w wop , Rureo 27

Augmentation vs BFS

Flow Integrality Theorem

