CSE 421 Intro to Algorithms Winter 2000

The Fraction Knapsack Problem:
A Greedy Example

CSE 421, W '00, Ruzz

Fractional Knapsack

Given:

A knapsack of capacity W

n items with

Weights: w₁, w₂, ..., w_n

Values: $v_1, v_1, ..., v_n$

Find:

 $\alpha_1, \alpha_2, ..., \alpha_n$, maximizing $\sum_{i=1}^n \alpha_i v_i$

Subject to: $0 \le \alpha_i \le 1$, and $\sum_{i=1}^n \alpha_i w_i = W$

CSE 421, W '00, Ruzzo

Greedy Solution

 Order by decreasing value per unit weight (renumbering as needed)

$$\frac{v_1}{w_1} \ge \frac{v_2}{w_2} \ge \cdots \ge \frac{v_n}{w_n}$$

• Take as much 1 as possible, then as much 2 as possible, ...

CSE 421, W '00, Ruzzo

The Greedy Choice Pays

Claim 1: \exists an optimal solution with as much as possible of item 1 in the knapsack, namely $\min(w_1, W)$. Equivalently $\alpha_1 = \min(w_1, W)/w_1$.

Proof: Among all optimal solutions, let $\beta_1, \beta_2, ..., \beta_n$ be one with maximum β_1 , but suppose (for the sake of contradiction) $\beta_1 < \alpha_1$. Since β has less of 1 than α , it must have more of something else, say j, i.e. $\beta_j > \alpha_j$. Form β' from β by carrying a little more 1 and less j, say $\epsilon = \min((\beta_j - \alpha_j) w_j, (\alpha_i - \beta_1) w_i) > 0$. Then β' will not have a lower value than β , since $\epsilon(\nu_1/w_1 - \nu_j/w_j) \geq 0$, but $\beta_1' > \beta_1$, contradicting our choice of β . QED

CSE 421, W '00, Ruzzo

Optimal Sub-solutions

Claim 2: The best solution for any given α_1 has α_2 , ..., α_n equal to an optimal solution for the smaller knapsack problem having items 2, 3, ..., n and capacity W - α_1 w_1 .

Proof: If not, we could get a better solution.

CSE 421, W '00, Ruzz

Keys to Greedy Algorithms

"Greedy Choice Property":

Making a locally optimal ("greedy") 1st step cannot prevent reaching a global optimum.

"Optimal Substructure":

The optimal solution to the problem contains optimal solutions to subproblems.

[E.g., see Claim 2. True of Dynamic Programming, too.]

SE 421, W '00, Ruzzo