CSE 421
Intro to Algorithms
Winter 2000
The Fraction Knapsack Problem:
A Greedy Example
Cseser, woonereo

Greedy Solution

Order by decreasing value per unit weight (renumbering as needed)

$$
\frac{v_{1}}{w_{1}} \geq \frac{v_{2}}{w_{2}} \geq \ldots \geq \frac{v_{n}}{w_{n}}
$$

- Take as much 1 as possible, then as much 2 as possible, ...

CSE 421, w oo, Ruzzo

The Greedy Choice Pays

Claim 1: \exists an optimal solution with as much as possible of item 1 in the knapsack, namely $\min \left(w_{1}, W\right)$. Equivalently $\alpha_{1}=\min \left(w_{1}, W\right) / w_{1}$.

Proof: Among all optimal solutions, let $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be one with maximum β_{1}, but suppose (for the sake of contradiction) $\beta_{1}<\alpha_{1}$. Since β has less of 1 than α, it must have more of something else, say j, i.e. $\beta_{j}>\alpha_{j}$ Form β^{\prime} from β by carrying a little more 1 and less j, say $\varepsilon=\min \left(\left(\beta_{\mathrm{j}}-\alpha_{\mathrm{j}}\right) w_{\mathrm{j}},\left(\alpha_{1}-\beta_{1}\right) w_{1}\right)>0$. Then β^{\prime} will not have a lower value than β, since $\varepsilon\left(v_{1} / w_{1}-v_{j} / w_{j}\right) \geq$ 0 , but $\beta_{1}^{\prime}>\beta_{1}$, contradicting our choice of β. QED
CSE 421, W 00, Ruzzo

Keys to Greedy Algorithms

"Greedy Choice Property":
Making a locally optimal ("greedy") $1^{\text {st }}$ step cannot prevent reaching a global optimum.
[E.g., see Claim 1.]
"Optimal Substructure":
The optimal solution to the problem contains optimal solutions to subproblems. solution.

