CSci 421
Introduction to Algorithms
Homework Assignment 4
Due: Friday, Feb 4, 2000
Winter 2000
Handout 4
W. L. Ruzzo

January 31, 2000

Reading Assignment:

By now you should have finished all of chapters 1-3 and 5. Also read:

- Material on dynamic programming: Stamp problem (lecture notes), 5.10, 6.8 (+ lecture notes).
- Material on Greedy Algorithms: Fractional knapsack (lecture notes), 6.6, 7.6.
- Next: Chapter 7, Graph Algorithms.

Homework:

1. Run the Knapsack algorithm (Fig 5.10, pg 110) on the sequence of weights $k_{1}=5, k_{2}=2$, $k_{3}=4, k_{4}=3$, and $k_{5}=6$], with knapsack capacity $K=16$. Show a table like Fig 5.11 to summarize the computation.
2. Problem 5.18.
3. Run the string alignment algorithm given in lecture (similar to Fig 6.27, pg 158) on strings $S=$ tcatag and $T=$ tataag. Build the cost matrix and traceback pointers as in the example given in lecture. Assume that aligning two identical letters gives a score of +2 , whereas aligning a letter with a mismatched letter or a gap gives a score of -1 .
4. You are given a binary tree with n leaves, with the i th leaf labeled by a letter S_{i} from a fixed alphabet Σ. You are also given a function c, which assigns a cost $c\left(S, S^{\prime}\right) \geq 0$ to each pair of letters S, S^{\prime} in Σ. Assume $c\left(S, S^{\prime}\right)=c\left(S^{\prime}, S\right)$ and $c(S, S)=0$ for all $S, S^{\prime} \in \Sigma$. The problem is to give each internal node x of the tree a label $S_{x} \in \Sigma$ so as to minimize the total over all tree edges of the cost of that edge, where the cost of an edge whose end points are labeled U and V is $c(U, V)$. Give an efficient algorithm to solve this problem, and analyze its running time as a function of n and $|\Sigma|$. Assume that each evaluation of the cost function $c \operatorname{costs} O(1)$ operations; e.g., via table lookup using a table built in to your algorithm. Hint: use dynamic programming. As we've seen before, you might need a stronger inductionhypothesis; i.e., you'll calculate more at each internal node than just whether to put letter " S " there. For instance, it might help to know the total cost of the subtree rooted there, assuming that it's labeled " S ".
[Although it doesn't matter for purposes of this homework, this algorithm is sometimes used in estimating evolutionary trees. The S_{i} are letters at corresponding positions in DNA or protein sequences from n different species, the tree is their presumed evolutionary tree, and the goal is to try to reconstruct the corresponding letters in the ancestral sequences.]
