Minimum Cost
Kruskal's Algorithm:
Another Example of the Greedy Method

Applications

- Broadcast tree in a network
- Building roads or power lines
- Routing power \& ground on a PC board
- Clustering
- ...

CSE 421, W'00, Ruzzo

Lemma 1:

Trees and Cycles

Adding an edge to a tree creates a cycle; deleting any cycle edge gives a tree

- Corollary 1: Solution to MST is a tree
- Corollary 2: Cheapest edge in E is in T
- Excercises:
- $2^{\text {nd-cheapest edge also in } T}$
- $3^{\text {rd-cheapest? }}$

CSE 421, W'00, Ruzzo
4

Correctness

Theorem: Kruskal's algorithm builds an MST Proof:

- Suppose Kruskal picks the tree K
- Suppose MST M maximizes |K \cap M| among all MSTs
- For sake of contradiction, suppose $K \neq M$
- Let e be the cheapest edge in $\mathrm{K}-\mathrm{M}$
- Then...

CSE 421, W'00, Ruzzo

Claim
$M \cup\{e\}$ has a cycle containing an edge f s.t. (1) $f \notin K$, and (2) $c(f) \geq c(e)$
Proof: (1) If all the cycle edges were in K , then K wouldn't be a tree.
(2) If $c(f)<c(e)$, greedy looked at f before But $\left\{e^{\prime} \in \mathrm{K} \mid \mathrm{c}\left(\mathrm{e}^{\prime}\right)<\mathrm{c}(\mathrm{e})\right\} \cup\{\mathrm{f}\} \subseteq \mathrm{M}$, hence acyclic, so f would have been picked, but it wasn't.

