
1

CSE 421, WI ‘00
Ruth Anderson

1

CSE 421
Introduction to Algorithms

Winter 2000

NP-Completeness
(Chapter 11)

CSE 421, WI ‘00
Ruth Anderson

2

Easy Problems vs. Hard Problems

Easy - problems whose worst case running
time is bounded by some polynomial in the
size of the input.

Easy = Efficient

Hard - problems that cannot be solved
efficiently.

CSE 421, WI ‘00
Ruth Anderson

3

The class P

Definition: P = set of problems solvable by
computers in polynomial time.

i.e. T(n) = O(nk) for some k.
• These problems are sometimes called

tractable problems.

Examples: sorting, SCC, matching, max flow,
shortest path, MST.

CSE 421, WI ‘00
Ruth Anderson

4

Is P a good definition of efficient?

Is O(n100) efficient? Is O(109n) efficient?

Is O(2n) really so bad?

So we have:
P = “ easy” = efficient = tractable
= solvable in polynomial-time.

CSE 421, WI ‘00
Ruth Anderson

5

Decision Problems

• Technically, we will restrict our discussion to
decision problems - problems that have an
answer of either yes or no.

• Most problems can be easily converted to
decision problems:
– Example: Instead of looking for the size of the

shortest path from s to t in a graph G, we ask:

“Is there a path from s to t of length ≤ k?”

– If we know how to solve the decision problem,
then we can usually solve the original problem.

CSE 421, WI ‘00
Ruth Anderson

6

Examples of Decision Problems in P

Big Flow
Given: graph G with edge lengths, vertices s and t,

integer k.

Question: Is there an s-t flow of length ≥ k?

Small Spanning Tree
Given: weighted undirected graph G, integer k.

Question: Is there a spanning tree of weight ≤ k?

2

CSE 421, WI ‘00
Ruth Anderson

7

Decision problem as a Language-
recognition problem

• Let U be the set of all possible inputs to the
decision problem.

• L ⊆ U = the set of all inputs for which the
answer to the problem is yes.

• We call L the language corresponding to the
problem. (problem = language)

• The decision problem is thus:
– to recognize whether or not a given input belongs

to L = the language recognition problem.

CSE 421, WI ‘00
Ruth Anderson

8

The class NP

Definition: NP = set of problems solvable by a
nondeterministic algorithm in polynomial time.

Another way of saying this:
NP = The class of problems whose solution can

be verified in polynomial time.
NP = “nondeterministic polynomial”

Examples: all of problems in P plus: SAT, TSP,
Hamiltonian cycle, bin packing, vertex cover.

CSE 421, WI ‘00
Ruth Anderson

9

Complexity Classes

P

NP

NP = Polynomial-time verifiable
P = Polynomial-time solvable CSE 421, WI ‘00

Ruth Anderson
10

Verifying Solutions

Given a problem and a potential solution,
verify if the solution is correct in polynomial-
time.

In general, guess a solution, and then check if
the guess is correct in polynomial time.

CSE 421, WI ‘00
Ruth Anderson

11

Examples of Problems in NP

Vertex Cover
A vertex cover of G is a set of vertices such that

every edge in G is incident to at least one of these
vertices. Example:

Question: Given a graph G, integer k, determine
whether G has a vertex cover containing ≤ k
vertices?

Verify: Given a set of ≤ k vertices, does it cover
every edge? (Guess and check in polynomial
time.)

CSE 421, WI ‘00
Ruth Anderson

12

Examples of Problems in NP

Satisfiability (SAT)
A Boolean formula in conjunctive normal form (CNF)

is satisfiable if there exists a truth assignment of
0’s and 1’s to its variables such that the value of
the expression is 1. Example:

S=(x+y+¬z)•(¬x+y+z)•(¬x+¬y+¬z)

Question: Given a Boolean formula in CNF, is it
satisfiable?

Verify: Given a truth assignment, does it satisfy the
formula? (Guess and check in polynomial time.)

3

CSE 421, WI ‘00
Ruth Anderson

13

Problems in P can also be verified in
polynomial-time

Shortest Path: Given a graph G with edge lengths,
is there a path from s to t of length ≤ k?

Verify: Given a path from s to t, is its length ≤ k?

Small Spanning Tree: Given a weighted undirected
graph G, is there a spanning tree of weight ≤ k?

Verify: Given a spanning tree, is its weight ≤ k?

CSE 421, WI ‘00
Ruth Anderson

14

Nondeterminism

• A nondeterministic algorithm has all the
“regular” operations of any other algorithm
available to it.

• In addition, it has a powerful primitive, the
nd-choice primitive.

• The nd-choice primitive is associated with a
fixed number of choices, such that each
choice causes the algorithm to follow a
different computation path.

CSE 421, WI ‘00
Ruth Anderson

15

Nondeterminism (cont.)

• A nondeterministic algorithm consists of an
interleaving of regular deterministic steps and
uses of the nd-choice primitive.

• We require that:
– The algorithm have at least one “good” path

sequence of choices for every x ∈ L.

– For all x ∉ L, we reach a reject outcome in all
paths.

CSE 421, WI ‘00
Ruth Anderson

16

Nondeterminism (cont.)

We say that a nondeterministic algorithm
recognizes a language L if:

Given an input x, it is possible to convert each
nd-choice encountered during the execution of the
algorithm into a real choice such that the outcome
of the algorithm will be to accept x, iff x ∈ L.

CSE 421, WI ‘00
Ruth Anderson

17

The class NP-complete

Definition: NP-complete = set of problems in
NP that (we are pretty sure) cannot be
solved in polynomial time.

These are thought of as the hardest problems
in the class NP.

Interesting fact: If any one NP-complete
problem could be solved in polynomial time,
then all NP-complete problems could be
solved in polynomial time.

CSE 421, WI ‘00
Ruth Anderson

18

Complexity Classes

NP = Polynomial-time verifiable
P = Polynomial-time solvable
NP-Complete = “ Hardest” problems in NP

NP

P NP-Complete

4

CSE 421, WI ‘00
Ruth Anderson

19

The class NP-complete (cont.)

• Hundreds of important problems have been
shown to be NP-complete.

Interesting Fact: The general belief is that
there is no efficient algorithm for any
NP-complete problem, but no proof of that
belief is known.

Examples: SAT, clique, vertex cover,
Hamiltonian cycle, TSP, bin packing.

CSE 421, WI ‘00
Ruth Anderson

20

NP-CompleteP

NP

sorting
SCC
max flow
MST

SAT
clique
vertex cover
traveling salesman

Complexity Classes of Problems

CSE 421, WI ‘00
Ruth Anderson

21

Does P = NP?

• This is an open question.
• To show that P = NP, we have to show that

every problem that belongs to NP can be
solved by a polynomial time deterministic
algorithm.

• No one has shown this yet.
• (It seems unlikely to be true.)

CSE 421, WI ‘00
Ruth Anderson

22

Earlier in this class we learned techniques for
solving problems in P.

Question: Do we just throw up our hands if we
come across a problem we suspect not to be
in P?

CSE 421, WI ‘00
Ruth Anderson

23

Dealing with NP-complete Problems

What if I think my problem is not in P?

Here is what you do:
1) Prove your problem is NP-complete.
2) Come up with an algorithm to solve the

problem approximately.

I will cover (1) this week, Larry will cover (2) next
week.

CSE 421, WI ‘00
Ruth Anderson

24

Reductions: a useful tool

Definition: To reduce A to B means to figure out
how to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select (n/2) th

Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.

5

CSE 421, WI ‘00
Ruth Anderson

25

More Examples of reductions

Example:
reduce BIPARTITE_MATCHING to MAX_FLOW

s t

All capacities = 1

Is there a flow of size k?
u v

Is there a matching of size k?

f

CSE 421, WI ‘00
Ruth Anderson

26

Polynomial-Time Reductions

Definition: Let L1 and L2 be two languages
from the input spaces U1 and U2.

We say that L1 is polynomially reducible to L2
if there exists a polynomial-time algorithm f
that converts each input u1 ∈ U1 to another
input u2 ∈ U2 such that u1 ∈ L1 iff u2 ∈ L2.

u1 ∈ L1 ⇔ f(u1) ∈ L2

CSE 421, WI ‘00
Ruth Anderson

27

Polynomial-time Reduction from language L1 to language L2

via reduction function f.

L1

U1 U2

L2
f

u1 ∈ L1 ⇔ f(u1) ∈ L2 CSE 421, WI ‘00
Ruth Anderson

28

Polynomial-Time Reductions (cont.)

Define: A ≤p
 B “A is polynomial-time reducible to

B”, iff there is a polynomial-time computable
function f such that: x ∈ A ⇔ f(x) ∈ B

“complexity of A” ≤ “complexity of B” + “complexity of f”

(1) A ≤p
 B and B ∈ P ⇒ A ∈ P

(2) A ≤p
 B and A ∉ P ⇒ B ∉ P

(3) A ≤p
 B and B ≤p

 C ⇒ A ≤p
 C (transitivity)

CSE 421, WI ‘00
Ruth Anderson

29

Using an Algorithm for B to Decide A

Algorithm
to compute f

x Algorithm
to decide B

f(x) f(x) ∈ B? x ∈ A?

Algorithm to decide A

“ I f A ≤p

B, and we can solve B in polynomial time,

then we can solve A in polynomial time also.”

CSE 421, WI ‘00
Ruth Anderson

30

More Definitions

Definition: Problem B is NP-hard if every
problem in NP is polynomially reducible to B.

Definition: Problem B is NP-complete if:
(1) B belongs to NP, and
(2) B is NP-hard.

6

CSE 421, WI ‘00
Ruth Anderson

31

Proving a problem is NP-complete

• Technically,for condition (2) We have to show
that every problem in NP is reducible to B.
(yikes!) This sounds like a lot of work.

• For the very first NP-complete problem
(SAT) this had to be proved directly.

• However, once we have one NP-complete
problem, then we don’t have to do this every
time.

• Why? Transitivity.

CSE 421, WI ‘00
Ruth Anderson

32

Re-stated Definition

Lemma 11.3: Problem B is NP-complete if:
(1) B belongs to NP, and
(2’) A is polynomial-time reducible to B, for

some problem A that is NP-complete.

That is, to show (2’) given a new problem B, it is
sufficient to show that SAT or any other
NP-complete problem is polynomial-time
reducible to B.

CSE 421, WI ‘00
Ruth Anderson

33

Usefulness of Transitivity

Now we only have to show L’ ≤p
 L , for some

problem L’∈ NP-complete, in order to show
that L is NP-hard. Why is this equivalent?

1) Since L’∈ NP-complete, we know that L’ is
NP-hard. That is:

∀ L’’∈ NP, we have L’’ ≤p
 L’

2) If we show L’ ≤p
 L, then by transitivity we know

that: ∀ L’’∈ NP, we have L’’ ≤p
 L.

Thus L is NP-hard.

CSE 421, WI ‘00
Ruth Anderson

34

The growth of the number of NP-
complete problems

• Steve Cook (1971) showed that SAT was
NP-complete.

• Richard Karp (1972) found 24 more
NP-complete problems.

• Today there are hundreds of known
NP-complete problems.
– Garey and Johnson (1979) is a good source of

NP-complete problems.

CSE 421, WI ‘00
Ruth Anderson

35

SAT is NP-complete

Cook’s theorem: SAT is NP-complete

Satisfiability (SAT)
A Boolean formula in conjunctive normal form (CNF)

is satisfiable if there exists a truth assignment of
0’s and 1’s to its variables such that the value of
the expression is 1. Example:

S=(x+y+¬z)•(¬x+y+z)•(¬x+¬y+¬z)

Example above is satisfiable. (We an see this by
setting x=1, y=1 and z=0.)

CSE 421, WI ‘00
Ruth Anderson

36

SAT is NP-complete

Rough idea of proof:

(1) SAT is in NP because we can guess a truth
assignment and check that it satisfies the
expression in polynomial time.

(2) SAT is NP-hard because …..

7

CSE 421, WI ‘00
Ruth Anderson

37

SAT is NP-hard

• A Turing machine (even a nondeterministic
one) and all of its operations on a given input
can be “described” by a Boolean expression.

• That is, the expression will be satisfiable iff
the Turing machine will terminate in an
accepting state for the given input.

• Therefore, any NP algorithm can be
described by an instance of a SAT problem.

• Thus: Cook’s theorem: SAT is NP-complete.

CSE 421, WI ‘00
Ruth Anderson

38

How do you prove problem A is
NP-complete?

1) Prove A is in NP: show that given a solution, it can
be verified in polynomial time.

2) Prove that A is NP-hard:
a) Select a known NP-complete problem B.
b) Describe a polynomial time computable algorithm
that computes a function f, mapping every instance
of B to an instance of A. (that is: B ≤p

 A)
c) Prove that every yes-instance of B maps to a
yes-instance of A, and every no-instance of B maps
to a no-instance of A.

d) Prove that the algorithm computing f runs in
 polynomial time.

CSE 421, WI ‘00
Ruth Anderson

39

your
function

f

1) Prove A is in NP: “ Given a possible solution to A, I can
verify its correctness in polynomial-time.”

2) Prove that A is NP-hard:
a) “I will reduce known NP-complete problem B to A.”

b) “Let b be an arbitrary instance of problem B. Here is
how you convert b to an instance a of problem A.”
Note: this method must work for ANY instance of B.

c) “If a is a “yes”-instance, then this implies that b is also
a “yes”-instance. Conversely, if b is a “yes”-instance,
then this implies that a is also a “yes”-instance.”

d) “The conversion from B to A runs in polynomial
 time because….”

Proof that problem A is NP-complete

CSE 421, WI ‘00
Ruth Anderson

40

Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset C of V of

size ≤ k such that every edge in E is incident
to at least one vertex in C.

Example: Vertex cover of size ≤ 2.

NP-complete problem: Vertex Cover

CSE 421, WI ‘00
Ruth Anderson

41

NP-complete problem: Clique

Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset C of V of

size ≥ k such that all vertices in C are
connected to all other vertices in C.

Example: Clique of size ≥ 4

CSE 421, WI ‘00
Ruth Anderson

42

NP-complete problem:
Satisfiability (SAT)

Input: A Boolean formula in CNF form.
Output: True iff there is a truth assignment of

0’s and 1’s to the variables such that the
value of the expression is 1.

Example: Formula S is satisfiable with the
truth assignment x=1, y=1 and z=0.

S=(x+y+¬z)•(¬x+y+z)•(¬x+¬y+¬z)

8

CSE 421, WI ‘00
Ruth Anderson

43

NP-complete problem: 3-Coloring

Input: An undirected graph G=(V,E).
Output: True iff there is an assignment of

colors to the vertices in G such that no two
adjacent vertices have the same color. (using
only 3 colors)

Example:

CSE 421, WI ‘00
Ruth Anderson

44

NP-complete problem: Knapsack

Input: set of objects with weights and values, a
maximum weight that can be carried and a desired
value. (see p. 357 in Manber)

Output: True iff there is a subset of the objects with
(total weight ≤ allowable weight) and
(total value ≥ desired value).

Example: Items: {a, b, c},size(a)=3,size(b)=6,size(c)=4
value(a)=$30, value(b)=$24, value(c)=$18
Max weight = 10, Desired value = $50.

 Answer: yes, {a,b}

CSE 421, WI ‘00
Ruth Anderson

45

NP-complete problem: Partition

Input: Set of items S, each with an associated
size. The sum of the items’ sizes is 2k.

Output: True iff there is a subset of the items
whose sizes add up to k.

Example: S = (2,3,1,10,4,6). Is there a subset
of items that sums to 13? (yes)

