CSE 421
Introduction to Algorithms
Winter 2000

NP-Completeness
(Chapter 11)

CSE 421, WI ‘00
Ruth Anderson

Easy Problemsvs. Hard Problems

Easy - problems whose worst case running
time is bounded by some in the
size of the input.

Easy = Efficient

Hard - problems that cannot be solved
efficiently.

CSE 421, WI ‘00 2
Ruth Anderson

TheclassP

Definition: P = set of problems solvable by
computers in polynomial time.
i.e. T(n) = O(nK) for some k.
* These problems are sometimes called
tractable problems.

Examples: sorting, SCC, matching, max flow,
shortest path, MST.

CSE 421, WI ‘00
Ruth Anderson

Is P agood definition of efficient?

Is O(n1%) efficient? Is O(10°n) efficient?
Is O(2") really so bad?
So we have:

P ="“easy” = efficient = tractable
=solvable in polynomial-time.

CSE 421, W1 '00 4
Ruth Anderson

Decision Problems

« Technically, we will restrict our discussion to
decision problems - problems that have an
answer of either yes or no.

* Most problems can be easily converted to
decision problems:

— Example: Instead of looking for the size of the
shortest path from s to tin a graph G, we ask:
“Is there a path from s to t of length < k?”
— If we know how to solve the decision problem,
then we can usually solve the original problem.

CSE 421, WI ‘00
Ruth Anderson

Examples of Decision Problemsin P

Big Flow
Given: graph G with edge lengths, vertices s and t,
integer k.

Question: Is there an s-t flow of length = k?

Small Spanning Tree
Given: weighted undirected graph G, integer k.
Question: Is there a spanning tree of weight < k?

CSE 421, WI ‘00 6
Ruth Anderson

Decision problem as a Language-
recognition problem

The class NP

« Let U be the set of all possible inputs to the
decision problem.

e L OU = the set of all inputs for which the

answer to the problem is yes.

We call L the language corresponding to the

problem. (problem = language)

* The decision problem is thus:

— to recognize whether or not a given input belongs
to L = the language recognition problem.

CSE 421, WI ‘00 7
Ruth Anderson

Definition: NP = set of problems solvable by a
nondeterministic algorithm in polynomial time.

Another way of saying this:

NP = The class of problems whose solution can
be verified in polynomial time.

NP =*“nondeterministic polynomial”

Examples: all of problems in P plus: SAT, TSP,
Hamiltonian cycle, bin packing, vertex cover.

CSE 421, WI ‘00 8
Ruth Anderson

Complexity Classes

Verifying Solutions

NP = Polynomial-time verifiable

ceanww P = Polynomial-time solvable 9

Ruth Anderson

Given a problem and a potential solution,
verify if the solution is correct in polynomial-
time.

In general, guess a solution, and then check if
the guess is correct in polynomial time.

CSE 421, WI ‘00 10
Ruth Anderson

Examples of Problemsin NP

Examples of Problemsin NP

Vertex Cover

Avertex cover of G is a set of vertices such that
every edge in G is incident to at least one of these
vertices. Example:

Question: Given a graph G, integer k, determine
whether G has a vertex cover containing < k
vertices?

Verify: Given a set of < k vertices, does it cover
every edge? (Guess and check in polynomial
time.)

CSE 421, WI ‘00 1

Ruth Anderson

Satisfiability (SAT)

A Boolean formula in conjunctive normal form (CNF)
is satisfiable if there exists a truth assignment of
0's and 1's to its variables such that the value of
the expression is 1. Example:

S=(X+y+=z)e(~X+Y+Z) o (=X +y+-Z)

Question: Given a Boolean formula in CNF, is it
satisfiable?

Verify: Given a truth assignment, does it satisfy the
formula? (Guess and check in polynomial time.)

CSE 421, WI ‘00 12
Ruth Anderson

Problemsin P can also be verified in
polynomial-time

Shortest Path: Given a graph G with edge lengths,
is there a path from s to t of length < k?

Verify: Given a path from s to t, is its length < k?

Small Spanning Tree: Given a weighted undirected
graph G, is there a spanning tree of weight < k?

Verify: Given a spanning tree, is its weight < k?

CSE 421, WI ‘00 13

Ruth Anderson

Nondeterminism

* A nondeterministic algorithm has all the
“regular” operations of any other algorithm
available to it.

« In addition, it has a powerful primitive, the
nd-choice primitive.

* The nd-choice primitive is associated with a
fixed number of choices, such that each
choice causes the algorithm to follow a
different computation path.

CSE 421, WI ‘00 14
Ruth Anderson

Nondeterminism (cont.)

* A nondeterministic algorithm consists of an
interleaving of regular deterministic steps and
uses of the nd-choice primitive.

* We require that:

— The algorithm have at least one “good” path
sequence of choices for every x 0 L.

— For all x O L, we reach a reject outcome in all
paths.

CSE 421, WI ‘00 15

Ruth Anderson

Nondeterminism (cont.)

We say that a nondeterministic algorithm
recognizes a language L if:

Given an input x, it is possible to convert each
nd-choice encountered during the execution of the
algorithm into a real choice such that the outcome
of the algorithm will be to accept x, iff x O L.

CSE 421, WI ‘00 16
Ruth Anderson

The class NP-complete

Definition: NP-complete = set of problems in
NP that (we are pretty sure) cannot be
solved in polynomial time.

These are thought of as the hardest problems
in the class NP.

Interesting fact: If any one NP-complete
problem could be solved in polynomial time,
then all NP-complete problems could be
solved in polynomial time.

CSE 421, WI ‘00 17
Ruth Anderson

Complexity Classes

NP-Complete

NP = Polynomial-time verifiable
P = Polynomial-time solvable

Wi . —« ”n i 18
cocan. w0 NP Complete = “Hardest” problems in NP

The class NP-compl ete (cont.)

« Hundreds of important problems have been
shown to be NP-complete.

Interesting Fact: The general belief is that
there is no efficient algorithm for any
NP-complete problem, but no proof of that
belief is known.

Examples: SAT, clique, vertex cover,
Hamiltonian cycle, TSP, bin packing.

CSE 421, WI ‘00 19
Ruth Anderson

Complexity Classes of Problems

CSE 421, WI ‘00 20
Ruth Anderson

DoesP=NP?

« This is an open question.

* To show that P = NP, we have to show that
every problem that belongs to NP can be
solved by a polynomial time deterministic
algorithm.

* No one has shown this yet.

» (It seems unlikely to be true.)

CSE 421, WI ‘00 21
Ruth Anderson

Is all of this useful for anything23!»

Earlier in this class we learned techniques for
solving problems in P.

Question: Do we just throw up our hands if we
come across a problem we suspect not to be
in P?

CSE 421, WI ‘00 2
Ruth Anderson

Dealing with NP-compl ete Problems

What if I think my problem is not in P?

Here is what you do:
1) Prove your problem is NP-complete.

2) Come up with an algorithm to solve the
problem approximately.

I will cover (1) this week, Larry will cover (2) next
week.

CSE 421, WI ‘00 23
Ruth Anderson

Reductions; a useful tool

Definition: To reduce A to B means to figure out
how to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select (n/2) th

Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.

CSE 421, WI ‘00 24
Ruth Anderson

More Examples of reductions

Polynomial-Time Reductions

Example:
reduce BIPARTITE_MATCHING to MAX_FLOW

Isthere amatching of sizek? Isthereaflow of size k?
u v

f

=

All capacities= 1

CSE 421, WI ‘00 25
Ruth Anderson

Definition: Let L, and L, be two languages
from the input spaces U; and U,.

We say that L, is polynomially reducibleto L,
if there exists a polynomial-time algorithm f
that converts each input u, 0 U, to another
input u, 0 U, such that u, O L, iff u, O L,.

u, 0L, = fuyOL,

CSE 421, WI ‘00 26
Ruth Anderson

Polynomial-time Reduction from language L, to language L,
viareduction function f.

Polynomial-Time Reductions (cont.)

CSE 421, WI 00 u, 0Ly - f(ul) oL, o7
Ruth Anderson

Define: A <p B “Ais polynomial-time reducible to
B, iff there is a polynomial-time computable
function fsuchthat: xOA = f(x)OB

“complexity of A” < “complexity of B” + “complexity of f’

(1) A<pB and BOP O AP
(2) A<pB and AP [B [OP
(3) A<pB and B<5pC [J A <pC (transitivity)

CSE 421, WI ‘00 28
Ruth Anderson

Using an Algorithm for B to Decide A

More Definitions

Algorithm to decide A

X Algorithm f(x) | Algorithm | f(x) 0B? | x OA?

to compute f to decide B

“If A <p B, and we can solve B in polynomial time,
then we can solve A in polynomial time also.”

CSE 421, WI ‘00 29

Ruth Anderson

Definition: Problem B is NP-hard if every
problem in NP is polynomially reducible to B.

Definition: Problem B is NP-complete if:
(1) B belongs to NP, and
(2) B is NP-hard.

CSE 421, WI ‘00 0
Ruth Anderson

Proving a problem is NP-compl ete

« Technically,for condition (2) We have to show
that every problem in NP is reducible to B.
(yikes!) This sounds like a lot of work.

¢ For the very first NP-complete problem
(SAT) this had to be proved directly.

* However, once we have one NP-complete
problem, then we don’t have to do this every
time.

* Why? Transitivity.

CSE 421, WI ‘00 31
Ruth Anderson

Re-stated Definition

Lemma 11.3: Problem B is NP-complete if:
(1) B belongs to NP, and
@)

That is, to show (2’) given a new problem B, it is
sufficient to show that SAT or any other
NP-complete problem is polynomial-time
reducible to B.

CSE 421, WI ‘00 32
Ruth Anderson

Usefulness of Trangitivity

Now we only have to show L’ <p L, for some
problem L' /7NP-complete, in order to show
that L is NP-hard. Why is this equivalent?

1) Since L’JNP-complete, we know that L’ is
NP-hard. Thatis:

[JL"”[INP, we have L"” <p L’

2) If we show L’ <p L, then by transitivity we know
that: 7L” ZJNP, we have L" <p L.

Thus L is NP-hard.

CSE 421, WI ‘00 33
Ruth Anderson

The growth of the number of NP-
complete problems

¢ Steve Cook (1971) showed that SAT was
NP-complete.

« Richard Karp (1972) found 24 more
NP-complete problems.

« Today there are hundreds of known
NP-complete problems.

— Garey and Johnson (1979) is a good source of
NP-complete problems.

CSE 421, WI ‘00 34
Ruth Anderson

SAT is NP-complete

Cook’s theorem: SAT is NP-complete

Satisfiability (SAT)

A Boolean formula in conjunctive normal form (CNF)
is satisfiable if there exists a truth assignment of
0's and 1's to its variables such that the value of
the expression is 1. Example:

S=(X+y+=z)e(~X+Y+Z) o (=X +y+-Z)

Example above is satisfiable. (We an see this by

setting x=1, y=1 and z=0.)

CSE 421, WI ‘00 35
Ruth Anderson

SAT is NP-complete

Rough idea of proof:

(1) SAT is in NP because we can guess a truth
assignment and check that it satisfies the
expression in polynomial time.

(2) SAT is NP-hard because

CSE 421, WI ‘00 36
Ruth Anderson

SAT isNP-hard

How do you prove problem A is
NP-complete?

¢ A Turing machine (even a nondeterministic
one) and all of its operations on a given input
can be “described” by a Boolean expression.

« That s, the expression will be satisfiable iff
the Turing machine will terminate in an
accepting state for the given input.

« Therefore, any NP algorithm can be
described by an instance of a SAT problem.

¢ Thus: Cook’s theorem: SAT is NP-complete.

CSE 421, WI ‘00 37
Ruth Anderson

1) Prove A is in NP: show that given a solution, it can
be verified in polynomial time.

2) Prove that A is NP-hard:
a) Select a B.
b) Describe a polynomial time computable algorithm
that computes a function f,

(thatis: B <pA)

c) Prove that every yes-instance of B maps to a
yes-instance of A, and every no-instance of B maps
to a no-instance of A.
d) Prove that the algorithm computing

CSE 421, WI ‘00
Ruth Anderson

Proof that problem A is NP-complete

NP-complete problem: Vertex Cover

1) Prove A is in NP: “Given a possible solution to A, | can
verify its correctness in polynomial-time.”
2) Prove that A is NP-hard:
a) “I will reduce known NP-complete problem B to A.”
vour L D) “Let b be an arbitrary instance of problem B. Here is
fu"c;m#%ow you convert b to an instance a of problem A.”
Note: this method must work for ANY instance of B.
c) “If ais a “yes"-instance, then this implies that b is also
a “yes’-instance. Conversely, if b is a “yes"-instance,
then this implies that a is also a “yes™-instance.”

d) “The conversion from B to A runs in polynomial

CSE 421, WI ‘00 time because...."»
Ruth Anderson

Input: Undirected graph G = (V, E), integer k.

Qutput: True iff there is a subset C of V of
size < k such that every edge in E is incident
to at least one vertex in C.

Example: Vertex cover of size < 2.

CSE 421, WI ‘00
Ruth Anderson

NP-complete problem: Clique

NP-complete problem:
Satisfiability (SAT)

Input: Undirected graph G = (V, E), integer k.

OQutput: True iff there is a subset C of V of
size = k such that all vertices in C are
connected to all other vertices in C.

Example: Clique of size 2 4

CSE 421, W1 '00 41
Ruth Anderson

Input: A Boolean formula in CNF form.

Output: True iff there is a truth assignment of
0’s and 1's to the variables such that the
value of the expression is 1.

Example: Formula S is satisfiable with the
truth assignment x=1, y=1 and z=0.

S=(X+y+=z)e(=X+y+2z)e (=X +ay+-2)

CSE 421, WI ‘00
Ruth Anderson

NP-complete problem: 3-Coloring

NP-complete problem: Knapsack

Input: An undirected graph G=(V,E).

Output: True iff there is an assignment of
colors to the vertices in G such that no two
adjacent vertices have the same color. (using
only 3 colors)

Example:

CSE 421, WI ‘00 43

Ruth Anderson

Input: set of objects with weights and values, a
maximum weight that can be carried and a desired
value. (see p. 357 in Manber)

Output: True iff there is a subset of the objects with
(total weight < allowable weight) and
(total value = desired value).

Example: ltems: {a, b, c},size(a)=3,size(b)=6,size(c)=4
value(a)=$30, value(b)=%$24, value(c)=$18
Max weight = 10, Desired value = $50.

CSE 421, WI '00 Answer yes! {a,b} 44

Ruth Anderson

NP-complete problem: Partition

Input: Set of items S, each with an associated
size. The sum of the items’ sizes is 2k.

OQutput: True iff there is a subset of the items
whose sizes add up to k.

Example: S = (2,3,1,10,4,6). Is there a subset
of items that sums to 137 (yes)

CSE 421, WI ‘00 45

Ruth Anderson

