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Easy Problemsvs. Hard Problems

Easy - problems whose worst case running
time is bounded by some in the
size of the input.

Easy = Efficient

Hard - problems that cannot be solved
efficiently.
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TheclassP

Definition: P = set of problems solvable by
computers in polynomial time.
i.e. T(n) = O(nK) for some k.
* These problems are sometimes called
tractable problems.

Examples: sorting, SCC, matching, max flow,
shortest path, MST.
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Is P agood definition of efficient?

Is O(n1%) efficient? Is O(10°n) efficient?
Is O(2") really so bad?
So we have:

P ="“easy” = efficient = tractable
=solvable in polynomial-time.
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Decision Problems

« Technically, we will restrict our discussion to
decision problems - problems that have an
answer of either yes or no.

* Most problems can be easily converted to
decision problems:

— Example: Instead of looking for the size of the
shortest path from s to tin a graph G, we ask:
“Is there a path from s to t of length < k?”
— If we know how to solve the decision problem,
then we can usually solve the original problem.
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Examples of Decision Problemsin P

Big Flow
Given: graph G with edge lengths, vertices s and t,
integer k.

Question: Is there an s-t flow of length = k?

Small Spanning Tree
Given: weighted undirected graph G, integer k.
Question: Is there a spanning tree of weight < k?
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Decision problem as a Language-
recognition problem

The class NP

« Let U be the set of all possible inputs to the
decision problem.

e L OU = the set of all inputs for which the

answer to the problem is yes.

We call L the language corresponding to the

problem. (problem = language)

* The decision problem is thus:

— to recognize whether or not a given input belongs
to L = the language recognition problem.
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Definition: NP = set of problems solvable by a
nondeterministic algorithm in polynomial time.

Another way of saying this:

NP = The class of problems whose solution can
be verified in polynomial time.

NP =*“nondeterministic polynomial”

Examples: all of problems in P plus: SAT, TSP,
Hamiltonian cycle, bin packing, vertex cover.
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Complexity Classes

Verifying Solutions

NP = Polynomial-time verifiable

ceanww P = Polynomial-time solvable 9
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Given a problem and a potential solution,
verify if the solution is correct in polynomial-
time.

In general, guess a solution, and then check if
the guess is correct in polynomial time.
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Examples of Problemsin NP

Examples of Problemsin NP

Vertex Cover

Avertex cover of G is a set of vertices such that
every edge in G is incident to at least one of these
vertices. Example:

Question: Given a graph G, integer k, determine
whether G has a vertex cover containing < k
vertices?

Verify: Given a set of < k vertices, does it cover
every edge? (Guess and check in polynomial
time.)
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Satisfiability (SAT)

A Boolean formula in conjunctive normal form (CNF)
is satisfiable if there exists a truth assignment of
0's and 1's to its variables such that the value of
the expression is 1. Example:

S=(X+y+=z)e(~X+Y+Z) o (=X +y+-Z)

Question: Given a Boolean formula in CNF, is it
satisfiable?

Verify: Given a truth assignment, does it satisfy the
formula? (Guess and check in polynomial time.)
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Problemsin P can also be verified in
polynomial-time

Shortest Path: Given a graph G with edge lengths,
is there a path from s to t of length < k?

Verify: Given a path from s to t, is its length < k?

Small Spanning Tree: Given a weighted undirected
graph G, is there a spanning tree of weight < k?

Verify: Given a spanning tree, is its weight < k?
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Nondeterminism

* A nondeterministic algorithm has all the
“regular” operations of any other algorithm
available to it.

« In addition, it has a powerful primitive, the
nd-choice primitive.

* The nd-choice primitive is associated with a
fixed number of choices, such that each
choice causes the algorithm to follow a
different computation path.
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Nondeterminism (cont.)

* A nondeterministic algorithm consists of an
interleaving of regular deterministic steps and
uses of the nd-choice primitive.

* We require that:

— The algorithm have at least one “good” path
sequence of choices for every x 0 L.

— For all x O L, we reach a reject outcome in all
paths.
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Nondeterminism (cont.)

We say that a nondeterministic algorithm
recognizes a language L if:

Given an input x, it is possible to convert each
nd-choice encountered during the execution of the
algorithm into a real choice such that the outcome
of the algorithm will be to accept x, iff x O L.
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The class NP-complete

Definition: NP-complete = set of problems in
NP that (we are pretty sure) cannot be
solved in polynomial time.

These are thought of as the hardest problems
in the class NP.

Interesting fact: If any one NP-complete
problem could be solved in polynomial time,
then all NP-complete problems could be
solved in polynomial time.
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Complexity Classes

NP-Complete

NP = Polynomial-time verifiable
P = Polynomial-time solvable

Wi . —« ”n i 18
cocan. w0 NP Complete = “Hardest” problems in NP




The class NP-compl ete (cont.)

« Hundreds of important problems have been
shown to be NP-complete.

Interesting Fact: The general belief is that
there is no efficient algorithm for any
NP-complete problem, but no proof of that
belief is known.

Examples: SAT, clique, vertex cover,
Hamiltonian cycle, TSP, bin packing.
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Complexity Classes of Problems
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DoesP=NP?

« This is an open question.

* To show that P = NP, we have to show that
every problem that belongs to NP can be
solved by a polynomial time deterministic
algorithm.

* No one has shown this yet.

» (It seems unlikely to be true.)
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Is all of this useful for anything23!»

Earlier in this class we learned techniques for
solving problems in P.

Question: Do we just throw up our hands if we
come across a problem we suspect not to be
in P?
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Dealing with NP-compl ete Problems

What if I think my problem is not in P?

Here is what you do:
1) Prove your problem is NP-complete.

2) Come up with an algorithm to solve the
problem approximately.

I will cover (1) this week, Larry will cover (2) next
week.
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Reductions; a useful tool

Definition: To reduce A to B means to figure out
how to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select (n/2) th

Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.
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More Examples of reductions

Polynomial-Time Reductions

Example:
reduce BIPARTITE_MATCHING to MAX_FLOW

Isthere amatching of sizek?  Isthereaflow of size k?
u v

f

=

All capacities= 1
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Definition: Let L, and L, be two languages
from the input spaces U; and U,.

We say that L, is polynomially reducibleto L,
if there exists a polynomial-time algorithm f
that converts each input u, 0 U, to another
input u, 0 U, such that u, O L, iff u, O L,.

u, 0L, = fuyOL,
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Polynomial-time Reduction from language L, to language L,
viareduction function f.

Polynomial-Time Reductions (cont.)
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Define: A <p B “Ais polynomial-time reducible to
B, iff there is a polynomial-time computable
function fsuchthat: xOA = f(x)OB

“complexity of A” < “complexity of B” + “complexity of f’

(1) A<pB and BOP O AP
(2) A<pB and AP [ B [OP
(3) A<pB and B<5pC [J A <pC (transitivity)
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Using an Algorithm for B to Decide A

More Definitions

Algorithm to decide A

X Algorithm f(x) | Algorithm | f(x) 0B? | x OA?

to compute f to decide B

“If A <p B, and we can solve B in polynomial time,
then we can solve A in polynomial time also.”
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Definition: Problem B is NP-hard if every
problem in NP is polynomially reducible to B.

Definition: Problem B is NP-complete if:
(1) B belongs to NP, and
(2) B is NP-hard.
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Proving a problem is NP-compl ete

« Technically,for condition (2) We have to show
that every problem in NP is reducible to B.
(yikes!) This sounds like a lot of work.

¢ For the very first NP-complete problem
(SAT) this had to be proved directly.

* However, once we have one NP-complete
problem, then we don’t have to do this every
time.

* Why? Transitivity.
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Re-stated Definition

Lemma 11.3: Problem B is NP-complete if:
(1) B belongs to NP, and
@)

That is, to show (2’) given a new problem B, it is
sufficient to show that SAT or any other
NP-complete problem is polynomial-time
reducible to B.
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Usefulness of Trangitivity

Now we only have to show L’ <p L, for some
problem L' /7NP-complete, in order to show
that L is NP-hard. Why is this equivalent?

1) Since L’JNP-complete, we know that L’ is
NP-hard. Thatis:

[JL"”[INP, we have L"” <p L’

2) If we show L’ <p L, then by transitivity we know
that: 7L” ZJNP, we have L" <p L.

Thus L is NP-hard.
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The growth of the number of NP-
complete problems

¢ Steve Cook (1971) showed that SAT was
NP-complete.

« Richard Karp (1972) found 24 more
NP-complete problems.

« Today there are hundreds of known
NP-complete problems.

— Garey and Johnson (1979) is a good source of
NP-complete problems.
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SAT is NP-complete

Cook’s theorem: SAT is NP-complete

Satisfiability (SAT)

A Boolean formula in conjunctive normal form (CNF)
is satisfiable if there exists a truth assignment of
0's and 1's to its variables such that the value of
the expression is 1. Example:

S=(X+y+=z)e(~X+Y+Z) o (=X +y+-Z)

Example above is satisfiable. (We an see this by

setting x=1, y=1 and z=0.)
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SAT is NP-complete

Rough idea of proof:

(1) SAT is in NP because we can guess a truth
assignment and check that it satisfies the
expression in polynomial time.

(2) SAT is NP-hard because .....
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SAT isNP-hard

How do you prove problem A is
NP-complete?

¢ A Turing machine (even a nondeterministic
one) and all of its operations on a given input
can be “described” by a Boolean expression.

« That s, the expression will be satisfiable iff
the Turing machine will terminate in an
accepting state for the given input.

« Therefore, any NP algorithm can be
described by an instance of a SAT problem.

¢ Thus: Cook’s theorem: SAT is NP-complete.
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1) Prove A is in NP: show that given a solution, it can
be verified in polynomial time.

2) Prove that A is NP-hard:
a) Select a B.
b) Describe a polynomial time computable algorithm
that computes a function f,

(thatis: B <pA)

c) Prove that every yes-instance of B maps to a
yes-instance of A, and every no-instance of B maps
to a no-instance of A.
d) Prove that the algorithm computing
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Proof that problem A is NP-complete

NP-complete problem: Vertex Cover

1) Prove A is in NP: “Given a possible solution to A, | can
verify its correctness in polynomial-time.”
2) Prove that A is NP-hard:
a) “I will reduce known NP-complete problem B to A.”
vour L D) “Let b be an arbitrary instance of problem B. Here is
fu"c;m#%ow you convert b to an instance a of problem A.”
Note: this method must work for ANY instance of B.
c) “If ais a “yes"-instance, then this implies that b is also
a “yes’-instance. Conversely, if b is a “yes"-instance,
then this implies that a is also a “yes™-instance.”

d) “The conversion from B to A runs in polynomial
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Input: Undirected graph G = (V, E), integer k.

Qutput: True iff there is a subset C of V of
size < k such that every edge in E is incident
to at least one vertex in C.

Example: Vertex cover of size < 2.
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NP-complete problem: Clique

NP-complete problem:
Satisfiability (SAT)

Input: Undirected graph G = (V, E), integer k.

OQutput: True iff there is a subset C of V of
size = k such that all vertices in C are
connected to all other vertices in C.

Example: Clique of size 2 4

CSE 421, W1 '00 41
Ruth Anderson

Input: A Boolean formula in CNF form.

Output: True iff there is a truth assignment of
0’s and 1's to the variables such that the
value of the expression is 1.

Example: Formula S is satisfiable with the
truth assignment x=1, y=1 and z=0.

S=(X+y+=z)e(=X+y+2z)e (=X +ay+-2)
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NP-complete problem: 3-Coloring

NP-complete problem: Knapsack

Input: An undirected graph G=(V,E).

Output: True iff there is an assignment of
colors to the vertices in G such that no two
adjacent vertices have the same color. (using
only 3 colors)

Example:
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Input: set of objects with weights and values, a
maximum weight that can be carried and a desired
value. (see p. 357 in Manber)

Output: True iff there is a subset of the objects with
(total weight < allowable weight) and
(total value = desired value).

Example: ltems: {a, b, c},size(a)=3,size(b)=6,size(c)=4
value(a)=$30, value(b)=%$24, value(c)=$18
Max weight = 10, Desired value = $50.
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NP-complete problem: Partition

Input: Set of items S, each with an associated
size. The sum of the items’ sizes is 2k.

OQutput: True iff there is a subset of the items
whose sizes add up to k.

Example: S = (2,3,1,10,4,6). Is there a subset
of items that sums to 137 (yes)
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