
CSE 421
Intro to Algorithms
Winter 2000

Sequence Alignment

CSE 421, W 00, Ruzzo
Sequence Alignment

- What
- Why
- A Simple Algorithm
- Complexity Analysis
- A better Algorithm:
"Dynamic Programming"

CSE 421, W 00, Ruzzo

Sequence Similarity: Why

- Diff
- RCS
- Molecular Bio

Similar sequences often have similar origin or function
Similarity often recognizable after $10^{8}-10^{9}$ years

CSE 421, W o0, Ruzzo

Optimal Alignment: A Simple Algorithm

for all subseqs A of S, B of T s.t. $|A|=|B|$ do align $A[i]$ with $B[i], 1 \leq i \leq|A|$ align all other chars to spaces compute its value retain the max end
output the retained alignment

CSE 421, W oo, Ruzzo

Optimal Alignment in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ via "Dynamic Programming"

- Input: S, T, $|\mathrm{S}|=\mathrm{n},|\mathrm{T}|=\mathrm{m}$
- Output: value of optimal alignment

Easier to solve a "harder" problem:
$\mathrm{V}(\mathrm{i}, \mathrm{j})=$ value of optimal alignment of $\mathrm{S}[1], \ldots, \mathrm{S}[i]$ with $\mathrm{T}[1], \ldots, \mathrm{T}[j]$ for all $0 \leq \mathrm{i} \leq \mathrm{n}, 0 \leq \mathrm{j} \leq \mathrm{m}$.

CSE 421, W oo, Ruzzo

Base Cases

- $\mathrm{V}(\mathrm{i}, 0)$: first i chars of S ; all match spaces

$$
V(i, 0)=\sum_{k=1}^{i} \sigma(S[k],-)
$$

- $\mathrm{V}(0, \mathrm{j})$: first j chars of T ; all match spaces

$$
V(0, j)=\sum_{k=1}^{j} \sigma(-, T[k])
$$

General Case	
Opt align of $\mathrm{S}[1], \ldots, \mathrm{S}[i]$ vs $\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]$: for all $1 \leq i \leq n, 1 \leq j \leq m$.	

Finding Alignments: Trace Back							
$i^{\text {j }}$	0	1 c		3 d			$\leftarrow T$
0		(1).	-2	-3	-4	-5	
a	(-1)	-1	(1)	0	-1	-2	
2 c	-2	(1).	0	(0)	-1	-2	
$3 \quad \mathrm{~b}$	-3	(0)	(0)	-1	(2)	1	
c	-4	-1	(-1)	-1		1	
5 d	-5	-2	-2	(1).	0		
6 b	-6	-3	-3	0	(3)	(2)	

Complexity Notes

- Time $=O(m n)$, (value and alignment)
- Space $=O(m n)$
- Easy to get value in Time $=\mathrm{O}(\mathrm{mn})$ and Space $=O(\min (m, n))$
- Possible to get value and alignment in Time $=O(m n)$ and Space $=O(\min (m, n))$ but tricky.

CSE 421, w oo, Ruzzo
${ }_{18}$

