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Dealing with NP-completeness
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What to do if the  problem you want 
to solve is NP-hard

 You might have phrased your problem too 

generally

 e.g., in practice, the graphs that actually arise are 

far from arbitrary

 maybe they have some special characteristic 

that allows you to solve the problem in your 

special case

 for example the Independent-Set problem is easy on 
“interval graphs”

 Exactly the case for interval scheduling!

 search the literature to see if special cases 

already solved
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What to do if the  problem you want 
to solve is NP-hard

 Try to find an approximation algorithm

 Maybe you can’t get the size of the best Vertex 

Cover but you can find one within a factor of 2 of 

the best

 Given graph G=(V,E), start with an empty cover

 While there are still edges in E left

 Choose an edge e={u,v} in E and add both u and v
to the cover

 Remove all edges from E that touch either u or v.

 Edges chosen don’t share any vertices so 

optimal cover size must be at least # of edges 

chosen
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What to do if the  problem you want 
to solve is NP-hard

 Polynomial-time approximation algorithms for 

NP-hard problems can sometimes be ruled 

out unless P=NP

 E.g. Coloring Problem: Given a graph G=(V,E)

find the smallest k such that G has a k-coloring.

 No approximation ratio better than 4/3 is 

possible unless P=NP

 Otherwise you would have to be able to 

figure out if a 3-colorable graph can be 

colored in < 4 colors. i.e. if it can be             

3-colored
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Travelling Salesperson Problem

 TSP

 Given a weighted graph G find of a 

smallest weight tour that visits all vertices 

in G

 NP-hard

 Notoriously easy to obtain close to 
optimal solutions
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Minimum Spanning Tree 
Approximation
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Minimum Spanning Tree 
Approximation: Factor of 2

MST(G) ≤ TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G)

Any tour contains a spanning tree 
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Why did this work?

 We found an Euler tour on a graph that 
used the edges of the original graph 
(possibly repeated).

 The weight of the tour was the total 
weight of the new graph.

 Suppose now

 All edges possible

 Weights satisfy triangle inequality

 c(u,w) ≤ c(u,v)+c(v,w)
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Minimum Spanning Tree 
Approximation: Triangle Inequality

Can shortcut edges 
• Go to next new vertex
on the Euler tour
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Minimum Spanning Tree 
Approximation: Factor of 2

TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G)

Shortcut edges
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Christofides Algorithm:                      
A factor 3/2 approximation

 Any Eulerian subgraph of the weighted complete 
graph will do
 Eulerian graphs require that all vertices have even degree so

 Christofides Algorithm
 Compute an MST T

 Find the set O of odd-degree vertices in T

 Add a minimum-weight perfect matching* M on the vertices 
in O to T to make every vertex have even degree

 There are an even number of odd-degree vertices!

 Use an Euler Tour E in T∪M and then shortcut as before

 Claim: Cost(E) ≤ 1.5 TOUROPT

*Requires finding optimal matchings in general graphs, not just bipartite ones
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Christofides Approximation



13

Christofides Approximation

Claim: 2 Cost(M) ≤ TOUROPT

Any tour costs at least the cost of two matchings on O
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Knapsack Problem

 For any ε >0 can get an algorithm that 
gets a solution within (1+ε) factor of 
optimal with running time O(n2(1/ε)2)

 “Polynomial-Time Approximation Scheme”

or PTAS 

 Based on maintaining just the high order 

bits in the dynamic programming solution. 
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What to do if the  problem you want 
to solve is NP-hard

 More on approximation algorithms
 Research has classified many problems based on what 

kinds of polytime approximations are possible if P≠NP

 Best: (1+ε) factor for any ε>0.  (PTAS)
 packing and some scheduling problems, TSP in plane

 Some fixed constant factor > 1, e.g. 2, 3/2, 100
 Vertex Cover, TSP in space, other scheduling problems 

 Θ(log n) factor
 Set Cover, Graph Partitioning problems

 Worst: Ω(n1-ε) factor for any ε>0
 Clique, Independent-Set, Coloring
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What to do if the  problem you want 
to solve is NP-hard

 Try an algorithm that is provably fast “on 

average”.

 To even try this one needs a model of what a 

typical instance is.

 Typically, people consider “random graphs”

 e.g. all graphs with a given # of edges are 

equally likely

 Problems:

 real data doesn’t look like the random graphs

 distributions of real data aren’t analyzable
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What to do if the  problem you want 
to solve is NP-hard

 Try to search the space of possible hints/certificates 
in a more efficient way and hope it is quick enough

 Backtracking search  
 E.g. For SAT there are 2n possible truth assignments
 If we set the truth values one-by-one we might be able to 

figure out whole parts of the space to avoid, 

 e.g.  After setting x1←1, x2←0 we don’t even need to 
set x3 or x4 to know that it won’t satisfy
(¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (x4 ∨ ¬x3) ∧ (x1 ∨ ¬x4)

 Related technique: branch-and-bound

 Backtracking search can be very effective even 
with exponential worst-case time

 For example, the best SAT algorithms used in practice 
are all variants on backtracking search and can solve 
surprisingly large problems – more later
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What to do if the  problem you want 
to solve is NP-hard

 Use heuristic algorithms and hope they 
give good answers

 No guarantees of quality

 Many different types of heuristic algorithms

 Many different options, especially for 

optimization problems, such as TSP, 

where we want the best solution.

 We’ll mention several on following slides
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Heuristic algorithms for
NP-hard problems

 local search for optimization problems

 need a notion of two solutions being 
neighbors

 Start at an arbitrary solution S

 While there is a neighbor T of S that is 
better than S

 S←T
 Usually fast but often gets stuck in a local 

optimum and misses the global optimum
 With some notions of neighbor can take a long 

time in the worst case
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e.g., Neighboring solutions for TSP

Solution S Solution T

Two solutions are neighbors 

iff there is a pair of edges you can

swap to transform one to the other
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Heuristic algorithms for
NP-hard problems

 randomized local search
 start local search several times from random starting points and 

take the best answer found from each point
 more expensive than plain local search but usually much 

better answers

 Metropolis algorithm
 like (randomized) local search but at each step choose a random 

neighbor.  Always move if it is better but sometimes move to a 
worse neighbor with some fixed probability

 often used in practice but slow to converge in the worst 
case and still can get stuck in local optimum

 simulated annealing
 like Metropolis algorithm but probability of going to a worse 

neighbor is set to decrease with time on a “cooling schedule” as, 
presumably, solution is closer to optimal

 analogy with slow cooling to get to lowest energy state in a 
crystal (or in forging a metal)

 slower to converge than Metropolis
 most improvement occurs at some fixed temperature

 answers not much better than Metropolis
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Heuristic algorithms for
NP-hard problems

 genetic algorithms
 view each solution as a string (analogy with DNA)

 maintain a population of good solutions

 allow random mutations of single characters of individual 
solutions

 combine two solutions by taking part of one and part of 
another (analogy with crossover in sexual reproduction)

 get rid of solutions that have the worst values and make 
multiple copies of solutions that have the best values 
(analogy with natural selection -- survival of the fittest).

 little evidence that they work well and they are usually 
very slow

 as much religion as science
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Heuristic algorithms

 artificial neural networks
 based on very elementary model of human neurons

 Set up a circuit of artificial neurons

 each artificial neuron is an analog circuit gate whose 
computation depends on a set of connection strengths

 Train the circuit

 Adjust the connection strengths of the neurons by giving 
many positive & negative training examples and seeing if 
it behaves correctly

 The network is now ready to use

 Old: useful for ill-defined classification problems such as 
optical character recognition,  but not typical cut & dried 
problems

 Deep Neural Nets: enormous networks useful for an incredible 
variety of problems such as image recognition, translation, 
predicting sales & behavior but still not for NP-hard problems.
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Other directions

 DNA computing
 Each possible hint for an NP problem is represented as 

a string of DNA

 fill a test tube with all possible hints

 View verification algorithm as a series of tests

 e.g. checking each clause is satisfied in case of 
Satisfiability

 For each test in turn

 use lab operations to filter out all DNA strings that 
fail the test (works in parallel on all strings; uses PCR)

 If any string remains the answer is a YES.

 Relies on fact that Avogadro’s # 6 x 1023 is large to get enough 
strings to fit in a test-tube. 

 Error-prone & problem sizes typically very small!
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Other directions

 Quantum computing
 Use physical processes at the quantum level to implement 

“weird” kinds of circuit gates
 unitary transformations

 Quantum objects can be in a superposition of many pure 
states at once

 can have n objects together in a superposition of 2n states
 Each quantum circuit gate operates on the whole 

superposition of states at once
 inherent parallelism but classical randomized algorithms 

have a similar parallelism: not enough on its own
 Advantage over classical: copies interfere with each 

other.

 Need totally new kinds of algorithms to work well. Theoretically 
able to factor efficiently but huge practical problems: errors, 
decoherence.  

 Likely to be able to beat classical algorithms for simulating 
physics:  “quantum supremacy” 


