
1

CSE 421: Introduction to

Algorithms

Divide and Conquer

Paul Beame

2

Algorithm Design Techniques

 Divide & Conquer

 Reduce problem to one or more sub-problems of

the same type

 Typically, each sub-problem is at most a
constant fraction of the size of the original

problem

 e.g. Mergesort, Binary Search, Strassen’s

Algorithm, Quicksort (kind of)

3

Fast exponentiation

 Power(a,n)

 Input: integer n and number a

 Output: an

 Obvious algorithm

 n-1 multiplications

 Observation:

 if n is even, n=2m, then an=am•am

4

Divide & Conquer Algorithm

 Power(a,n)

if n=0 then return(1)

else if n=1 then return(a)

else

x ←Power(a,n/2)
if n is even then

return(x•x)

else

return(a•x•x)

5

Analysis

 Worst-case recurrence
 T(n)=T(n/2)+2 for n≥1

 T(1)=0

 Time
 T(n)=T(n/2)+2 ≤ T(n/4)+2+2 ≤ …

≤ T(1)+2+…+2 = 2 log2n

 More precise analysis:
 T(n)= log2n + # of 1’s in n’s binary

representation

log2n copies

6

A Practical Application- RSA

 Instead of an want an mod N
 ai+j mod N = ((ai mod N)•(aj mod N)) mod N

 same algorithm applies with each x•y replaced by

 ((x mod N)•(y mod N)) mod N

 In RSA cryptosystem (widely used for security)

 need an mod N where a, n, N each typically have
1024 bits

 Power: at most 2048 multiplies of 1024 bit
numbers

 relatively easy for modern machines

 Naive algorithm: 21024 multiplies

7

Binary search for roots
(bisection method)

 Given:
 continuous function f and two points a<b with

f(a) ≤ 0 and f(b) > 0

 Find:
 approximation to c s.t. f(c)=0 and a<c<b

8

Bisection method

Bisection(a,b, ε)

if (b-a) < ε then

return(a)

else

c ←(a+b)/2

if f(c) ≤ 0 then

return(Bisection(c,b,ε))

else

return(Bisection(a,c,ε))

9

Time Analysis

 At each step we halved the size of the
interval

 It started at size b-a

 It ended at size ε

 # of calls to f is log2((b-a)/ε)

10

Old favorites

 Binary search
 One subproblem of half size plus one comparison

 Recurrence T(n) = T(n/2)+1 for n ≥ 2
T(1) = 0

So T(n) is log2 n+1

 Mergesort
 Two subproblems of half size plus merge cost of

n-1 comparisons

 Recurrence T(n) ≤ 2T(n/2)+n-1 for n ≥ 2
T(1) = 0

Roughly n comparisons at each of log2 n levels of
recursion

So T(n) is roughly 2n log2 n

11

Euclidean Closest Pair

 Given a set P of n points p1,…,pn with real-valued
coordinates

 Find the pair of points pi,pj∈P such that the
Euclidean distance d(pi,pj) is minimized

 Θ(n2) possible pairs

 In one dimension: easy O(n log n) algorithm
 Sort the points

 Compare consecutive elements in the sorted list

 What about points in the plane?

12

Closest Pair in the Plane

No single direction along which one
can sort points to guarantee success!

13

Closest Pair In the Plane:
Divide and Conquer

 Sort the points by their x coordinates

 Split the points into two sets of n/2 points L and R by
x coordinate

 Recursively compute
 closest pair of points in L, (pL,qL)

 closest pair of points in R, (pR,qR)

 Let δ=min{d(pL,qL),d(pR,qR)} and let (p,q) be the pair
of points that has distance δ

14

Closest Pair In the Plane:
Divide and Conquer

 Sort the points by their x coordinates

 Split the points into two sets of n/2 points L and R by
x coordinate

 Recursively compute
 closest pair of points in L, (pL,qL)

 closest pair of points in R, (pR,qR)

 Let δ=min{d(pL,qL),d(pR,qR)} and let (p,q) be the pair
of points that has distance δ

 But this may not be enough
 Closest pair of points may involve one point from L and the

other from R!

15

A clever geometric idea

δ δ

L
R

Any pair of points p∈L and
q∈R with d(p,q)<δ must

lie in band

16

A clever geometric idea

δ δ

δ/2

L
R

Any pair of points p∈L and
q∈R with d(p,q)<δ must

lie in band

No two points can be in
the same green box

δ/√2

17

A clever geometric idea

δ δ

δ/2

L
R

Any pair of points p∈L and
q∈R with d(p,q)<δ must

lie in band

No two points can be in
the same green box

Only need to check pairs
of points up to 2 rows

apart -
At most a constant #

of other points!

18

Closest Pair Recombining

 Sort points by y coordinate ahead of time

 On recombination only compare each point in δ-band
of L∪R to the 11 points in δ-band of L∪R above it in
the y sorted order

 If any of those distances is better than δ replace (p,q)
by the best of those pairs

 O(n log n) for x and y sorting at start

 Two recursive calls on problems on half size

 O(n) recombination

 Total O(n log n)

19

Sometimes two sub-problems aren’t
enough

 More general divide and conquer

 You’ve broken the problem into a different

sub-problems

 Each has size at most n/b

 The cost of the break-up and recombining

the sub-problem solutions is O(nk)

 Recurrence

 T(n)≤ a⋅T(n/b)+c⋅nk

20

Master Divide and Conquer
Recurrence

 If T(n)≤ a⋅T(n/b)+c⋅nk for n>b then

 if a>bk then T(n) is

 if a<bk then T(n) is Θ(nk)

 if a=bk then T(n) is Θ(nk log n)

 Works even if it is n/b instead of n/b.

blog aΘ(n)

21

Proving Master recurrence

T(n)=a⋅T(n/b)+c⋅nk

a
n

Problem size

n/b

n/b2

b

1

probs

a2

a

1

ad

T(1)=c

22

Proving Master recurrence

T(n)=a⋅T(n/b)+c⋅nk

a
n

Problem size

n/b

n/b2

b

1

probs

a2

a

1

ad

T(1)=c

23

Proving Master recurrence

T(n)=a⋅T(n/b)+c⋅nk

a
n

Problem size

n/b

n/b2

b

1

probs

a2

a

1

ad

cost

cnk

T(1)=c

c⋅a⋅nk/bk

c⋅a2⋅nk/b2k

=c⋅nk(a/bk)2

c⋅nk(a/bk)d

=c⋅ad

24

Geometric Series

 S = t + tr + tr2 + ... + trn-1

 r⋅S = tr + tr2 + ... + trn-1 + trn

 (r-1)S =trn - t

 so S=t (rn -1)/(r-1) if r≠1.

 Simple rule

 If r ≠ 1 then S is a constant times largest

term in series

25

Total Cost

 Geometric series
 ratio a/bk

 d+1=logbn +1 terms

 first term cnk, last term cad

 If a/bk=1
 all terms are equal T(n) is Θ(nk log n)

 If a/bk<1
 first term is largest T(n) is Θ(nk)

 If a/bk>1
 last term is largest T(n) is Θ(ad)=Θ(a) =Θ(n
(To see this take logb of both sides)

logbn logba
)

26

Multiplying Matrices

 n3 multiplications, n3-n2 additions

•

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa

+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

o

o

o

o

27

Multiplying Matrices

for i=1 to n

for j=1 to n

C[i,j]←0

for k=1 to n

C[i,j]=C[i,j]+A[i,k]⋅B[k,j]

endfor

endfor

endfor

28

Multiplying Matrices

•

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa

+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

o

o

o

o

29

Multiplying Matrices

•

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa

+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

o

o

o

o

30

Multiplying Matrices

•

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa

+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

o

o

o

o

A11 A12

A21

A11B12+A12B22

A22

A11B11+A12B21

B11 B12

B21 B22

A21B12+A22B22
A21B11+A22B21

31

Simple Divide and Conquer

 T(n)=8T(n/2)+4(n/2)2=8T(n/2)+n2

 8>22 so T(n) is

A11 A12

A21

A11B12+A12B22

A22

A11B11+A12B21

B11 B12

B21 B22

A21B12+A22B22
A21B11+A22B21

=

b 2log a log 8 3() () ()= =Θ Θ Θn n n

32

Strassen’s Divide and Conquer
Algorithm

 Strassen’s algorithm
 Multiply 2x2 matrices using 7 instead of 8

multiplications (and lots more than 4 additions)

 T(n)=7 T(n/2)+cn2

 7>22 so T(n) is Θ(n) which is O(n2.81…)

 Fastest algorithms theoretically use O(n2.373) time

 not practical but Strassen’s is practical
provided calculations are exact and we stop
recursion when matrix has size somewhere
between 10 and 100

log27

33

The algorithm

P1←A12(B11+B21); P2←A21(B12+B22)

P3←(A11 - A12)B11; P4←(A22 - A21)B22

P5←(A22 - A12)(B21 - B22)

P6←(A11 - A21)(B12 - B11)

P7← (A21 - A12)(B11+B22)

C11←P1+P3 ; C12←P2+P3+P6 - P7

C21←P1+P4+P5+P7 ; C22←P2+P4

34

Another Divide &Conquer Example:
Multiplying Faster

 If you analyze our usual grade school

algorithm for multiplying numbers

 Θ(n2) time

 On real machines each “digit” is, e.g., 64 bits long

but still get Θ(n2) running time with this algorithm

when run on n-bit multiplication

 We can do better!

 We’ll describe the basic ideas by multiplying

polynomials rather than integers

 Advantage is we don’t get confused by worrying

about carries at first

35

Notes on Polynomials

 These are just formal sequences of

coefficients

 when we show something multiplied by xk it just

means shifted k places to the left – basically no

work

Usual polynomial

multiplication

4x2 + 2x + 2

x2 - 3x + 1

4x2 + 2x + 2

-12x3 - 6x2 - 6x

4x4 + 2x3 +2x2

4x4 -10x3 +0x2 - 4x + 2

36

Polynomial Multiplication

 Given:
 Degree n-1 polynomials P and Q

 P = a0 + a1 x + a2 x2 + … + an-2x
n-2 + an-1x

n-1

 Q = b0 + b1 x+ b2 x2 + … + bn-2x
n-2 + bn-1x

n-1

 Compute:
 Degree 2n-2 Polynomial P Q

 P Q = a0b0 + (a0b1+a1b0) x + (a0b2+a1b1 +a2b0) x
2

+...+ (an-2bn-1+an-1bn-2) x
2n-3 + an-1bn-1 x2n-2

 Obvious Algorithm:

 Compute all aibj and collect terms

 Θ (n2) time

37

Naive Divide and Conquer

 Assume n=2k

 P = (a0 + a1 x + a2 x2 + ... + ak-2 xk-2 + ak-1 xk-1) +

(ak + ak+1 x + … + an-2x
k-2 + an-1x

k-1) xk

= P0 + P1 xk where P0 and P1 are degree k-1

polynomials

 Similarly Q = Q0 + Q1 xk

 P Q = (P0+P1x
k)(Q0+Q1x

k)

= P0Q0 + (P1Q0+P0Q1)x
k + P1Q1x

2k

 4 sub-problems of size k=n/2 plus linear combining

 T(n)=4⋅T(n/2)+cn Solution T(n) = Θ(n2)

38

Karatsuba’s Algorithm

 A better way to compute the terms

 Compute

 A ← P0Q0

 B ← P1Q1

 C ← (P0+P1)(Q0+Q1) = P0Q0+P1Q0+P0Q1+P1Q1

 Then

 P0Q1+P1Q0 = C-A-B

 So PQ=A+(C-A-B)xk+Bx2k

 3 sub-problems of size n/2 plus O(n) work

 T(n) = 3 T(n/2) + cn

 T(n) = O(nα) where α = log23 = 1.59...

39

Karatsuba:

Details

PolyMul(P, Q):
// P, Q are length n =2k vectors, with P[i], Q[i] being
// the coefficient of xi in polynomials P, Q respectively.

// Let P0 be elements 0..k-1 of P; P1 be elements k..n-1

// Qzero, Qone : similar

If n=1 then Return(P[0]*Q[0]) else

A ← PolyMul(P0, Q0); // result is a (2k-1)-vector

B ← PolyMul(P1, Q1); // ditto

Psum ← P0 + P1; // add corresponding elements

Qsum ← Q0 + Q1; // ditto

C ← polyMul(Psum, Qsum); // another (2k-1)-vector

Mid ← C – A – B; // subtract correspond elements

R ← A + Shift(Mid, n/2) +Shift(B,n) // a (2n-1)-vector

Return(R);

A
Mid

B

R

2n-1 n n/2 0

40

Multiplication

 Polynomials
 Naïve: Θ(n2)

 Karatsuba: Θ(n1.59…)

 Best known: Θ(n log n)

 "Fast Fourier Transform“

 FFT widely used for signal processing

 Integers
 Similar, but some ugly details re: carries, etc. due to

Schonhage-Strassen in 1971 gives Θ(n log n loglog n)

 Improvement in 2007 due to Furer gives Θ(n log n 2log* n)

 Used in practice in symbolic manipulation systems like

Maple

41

Hints towards FFT:
Interpolation

Given set of values at 5 points

42

Hints towards FFT:
Interpolation

Given set of values at 5 points

Can find unique degree 4 polynomial

going through these points

43

Multiplying Polynomials by
Evaluation & Interpolation

 Any degree n-1 polynomial R(y) is determined

by R(y0), ... R(yn-1) for any n distinct y0,...,yn-1

 To compute PQ (assume degree at most n/2-1)

 Evaluate P(y0),..., P(yn-1)

 Evaluate Q(y0),...,Q(yn-1)

 Multiply values P(yi)Q(yi) for i=0,...,n-1

 Interpolate to recover PQ

44

Interpolation

 Given values of degree n-1 polynomial R at n
distinct points y0,…,yn-1

 R(y0),…,R(yn-1)

 Compute coefficients c0,…,cn-1 such that
 R(x)=c0+c1x+c2x

2+…+cn-1x
n-1

 System of linear equations in c0,…,cn-1

c0 +c1y0+c2y0
2+…+cn-1y0

n-1=R(y0)

c0 +c1y1+c2y1
2+…+cn-1y1

n-1=R(y1)

…

c0 +c1yn-1+c2yn-1
2+..+cn-1yn-1

n-1=R(yn-1)

known

unknown

45

Interpolation:
n equations in n unknowns

 Matrix form of the linear system

1 y0 y0
2 … y0

n-1 c0 R(y0)

1 y1 y1
2 … y1

n-1 c1 R(y1)

… c2 = .

… . .

1 yn-1 yn-1
2 … yn-1

n-1 cn-1 R(yn-1)

 Fact: Determinant of the matrix is Πi<j (yi-yj)
which is not 0 since points are distinct
 System has a unique solution c0,…,cn-1

46

Hints towards FFT:
Evaluation & Interpolation

P: a0,a1,...,an/2-1

Q: b0,b1,...,bn/2-1

P(y0),Q(y0)

P(y1),Q(y1)

...

P(yn-1),Q(yn-1)

R(y0)←P(y0)⋅Q(y0)

R(y1)←P(y1)⋅Q(y1)

...

R(yn-1)←P(yn-1)⋅Q(yn-1)

R:c0,c1,...,cn-1
=+

←
kji

jik bac

ordinary polynomial
multiplication Θ(n2)

point-wise
multiplication

of numbers O(n)

evaluation
at y0,...,yn-1

O(?)

interpolation
from y0,...,yn-1

O(?)

47

Karatsuba’s algorithm and evaluation
and interpolation

 Strassen gave a way of doing 2x2 matrix multiplies

with fewer multiplications

 Karatsuba’s algorithm can be thought of as a way of

multiplying degree 1 polynomials (which have 2

coefficients) using fewer multiplications

 PQ=(P0+P1z)(Q0+Q1z)

= P0Q0 + (P1Q0+P0Q1)z + P1Q1z
2

 Evaluate at 0,1,-1 (Could also use other points)

 A = P(0)Q(0)= P0Q0

 C = P(1)Q(1)=(P0+P1)(Q0+Q1)

 D = P(-1)Q(-1)=(P0 -P1)(Q0 -Q1)

 Interpolating, Karatsuba’s Mid=(C-D)/2 and B=(C+D)/2-A

48

Evaluation at Special Points

 Evaluation of polynomial at 1 point
takes O(n) time

 So 2n points (naively) takes O(n2)—no

savings

 But the algorithm works no matter what the

points are…

 So…choose points that are related to
each other so that evaluation problems
can share subproblems

49

The key idea:
Evaluate at related points

 P(x) = a0+a1x+a2x
2+a3x

3+a4x
4+...+an-1x

n-1

= a0 +a2x
2 +a4x

4 +...+ an-2x
n-2

+ a1x+a3x
3 +a5x

5 +...+an-1x
n-1

= Peven(x2) + x Podd(x2)

 P(-x)=a0 -a1x+a2x
2 -a3x

3+a4x
4-... -an-1x

n-1

= a0 +a2x
2 +a4x

4 +...+ an-2x
n-2

- (a1x+a3x
3 +a5x

5 +...+an-1x
n-1)

= Peven(x2) - x Podd(x2)

where Peven(z) = a0 +a2z +a4z
2 +...+ an-2z

n/2-1

and Podd(z) = a1+a3z +a5z
2 +...+an-1z

n/2-1

50

The key idea:
Evaluate at related points

 So… if we have half the points as negatives of the
other half
 i.e., yn/2= -y0, yn/2+1= -y1,…,yn-1= -yn/2-1

then we can reduce the size n problem of evaluating
degree n-1 polynomial P at n points to evaluating 2
degree n/2 - 1 polynomials Peven and Podd at n/2
points y0

2,…yn/2-1
2 and recombine answers with O(1)

extra work per point

51

The key idea:
Evaluate at related points

 So… if we have half the points as negatives of the
other half
 i.e., yn/2= -y0, yn/2+1= -y1,…,yn-1= -yn/2-1

then we can reduce the size n problem of evaluating
degree n-1 polynomial P at n points to evaluating 2
degree n/2 - 1 polynomials Peven and Podd at n/2
points y0

2,…yn/2-1
2 and recombine answers with O(1)

extra work per point

 But to use this idea recursively we need half of
y0

2,…yn/2-1
2 to be negatives of the other half

52

The key idea:
Evaluate at related points

 So… if we have half the points as negatives of the
other half
 i.e., yn/2= -y0, yn/2+1= -y1,…,yn-1= -yn/2-1

then we can reduce the size n problem of evaluating
degree n-1 polynomial P at n points to evaluating 2
degree n/2 - 1 polynomials Peven and Podd at n/2
points y0

2,…yn/2-1
2 and recombine answers with O(1)

extra work per point

 But to use this idea recursively we need half of
y0

2,…yn/2-1
2 to be negatives of the other half

 If yn/4
2 = -y0

2, say, then (yn/4/y0)
2= -1

53

The key idea:
Evaluate at related points

 So… if we have half the points as negatives of the
other half
 i.e., yn/2= -y0, yn/2+1= -y1,…,yn-1= -yn/2-1

then we can reduce the size n problem of evaluating
degree n-1 polynomial P at n points to evaluating 2
degree n/2 - 1 polynomials Peven and Podd at n/2
points y0

2,…yn/2-1
2 and recombine answers with O(1)

extra work per point

 But to use this idea recursively we need half of
y0

2,…yn/2-1
2 to be negatives of the other half

 If yn/4
2 = -y0

2, say, then (yn/4/y0)
2= -1

 Motivates use of complex numbers as evaluation
points

54

Complex Numbers
i 2 = -1

i

a+bi

To multiply complex numbers:

1. add angles

2. multiply lengths

(all length 1 here)θ
ϕ

1

-i

-1

c+di

θ+ϕe+fi

e+fi = (a+bi)(c+di)

a+bi =cos θ +i sin θ = eiθ

c+di =cos ϕ +i sin ϕ = eiϕ

e+fi =cos (θ+ϕ) +i sin (θ+ϕ) = ei(θ+ϕ)e2πi = 1

eπi = -1

55

Primitive nth root of 1 ω=ωn= ei 2π/n

Let ω = ωn = ei 2π /n

= cos (2π/n) +i sin (2π/n)

i2 = -1

e2π i = 1

ω0=1=ω8

ω2=i

ω6= -i

ω4=-1

ω3

ω7

ω

ω5

Facts about ω=e2πi /n for even n

 ω = e2πi /n for i = −�

 ωn = 1

 ωn/2 = -1

 ωn/2+k = - ωk for all values of k

 ω2 = e2πi / m where m=n/2

 ωk = cos(2kπ/n)+i sin(2kπ/n) so can compute with

powers of ω

 ωk is a root of xn-1= (x-1)(xn-1+xn-2+…+1) =0

but for k≠0, ωk≠1 so ωk(n-1)+ωk(n-2) +…+1=0

56

57

The key idea for n even

 P(ω) = a0+a1ω+a2ω2+a3ω3+a4ω4+...+an-1ωn-1

= a0 +a2ω2 +a4ω4 +...+ an-2ωn-2

+ a1ω+a3ω3 +a5ω5 +...+an-1ωn-1

= Peven(ω2) + ω Podd(ω2)

 P(-ω)=a0 -a1ω+a2ω2 -a3ω3+a4ω4-... -an-1ωn-1

= a0 +a2ω2 +a4ω4 +...+ an-2ωn-2

- (a1ω+a3ω3 +a5ω5 +...+an-1ωn-1)

= Peven(ω2) - ω Podd(ω2)

where Peven(x) = a0 +a2x +a4x
2 +...+ an-2x

n/2-1

and Podd(x) = a1+a3x +a5x
2 +...+an-1x

n/2-1

58

The recursive idea for
n a power of 2

 Goal:
 Evaluate P at 1,ω,ω2,ω3,...,ωn-1

 Now
 Peven and Podd have degree n/2-1 where

 P(ωk)=Peven(ω2k)+ωkPodd(ω2k)

 P(-ωk)=Peven(ω2k)-ωkPodd(ω2k)

 Recursive Algorithm
 Evaluate Peven at 1,ω2,ω4,...,ωn-2

 Evaluate Podd at 1,ω2,ω4,...,ωn-2

 Combine to compute P at 1,ω,ω2,...,ωn/2-1

 Combine to compute P at -1,-ω,-ω2,...,-ωn/2-1

(i.e. at ωn/2, ωn/2+1 , ωn/2+2,..., ωn-1)

ω2 is e2πi /m where m=n/2

so problems are of same

type but smaller size

59

Analysis and more

 Run-time

 T(n)=2⋅T(n/2)+cn so T(n)=O(n log n)

 So much for evaluation ... what about

interpolation?

 Given

 r0=R(1), r1=R(ω), r2=R(ω2),..., rn-1=R(ωn-1)

 Compute

 c0, c1,...,cn-1 s.t. R(x)=c0+c1x+...+cn-1x
n-1

60

Interpolation ≈ Evaluation:
strange but true

 Non-obvious fact:
 If we define a new polynomial

S(x) = r0 + r1x + r2x
2 +...+ rn-1x

n-1 where r0, r1, ... , rn-1

are the evaluations of R at 1, ω, ... , ωn-1

 Then ck=S(ω-k)/n for k=0,...,n-1

 Relies on the fact the interpolation (inverse) matrix
has jk entry ω-(jk)/n instead of ωjk

 So...
 evaluate S at 1,ω-1,ω-2,...,ω-(n-1) then divide each

answer by n to get the c0,...,cn-1

 ω-1 behaves just like ω did so the same O(n log n)
evaluation algorithm applies !

61

Divide and Conquer Summary

 Powerful technique, when applicable

 Divide large problem into a few smaller
problems of the same type

 Choosing sub-problems of roughly equal size
is usually critical

 Examples:
 Merge sort, quicksort (sort of), polynomial

multiplication, FFT, Strassen's matrix multiplication
algorithm, powering, binary search, root finding by
bisection, …

62

Why this is called the discrete Fourier
transform

 Real Fourier series
 Given a real valued function f defined on [0,2π]

the Fourier series for f is given by
f(x)=a0+a1 cos(x) + a2 cos(2x) +...+ am cos(mx) +...
where

am=

 is the component of f of frequency m

 In signal processing and data compression one
ignores all but the components with large am and
there aren’t many since

π

π

2

0

dx cos(mx) f(x)
2

1

63

Why this is called the discrete Fourier
transform

 Complex Fourier series
 Given a function f defined on [0,2π]

the complex Fourier series for f is given by

f(z)=b0+b1 ei z + b2 e2i z +...+ bm emi z +...
where

bm=

is the component of f of frequency m

 If we discretize this integral using values at n

equally spaced points between 0 and 2π we get

π

π
2

-m z

0

1
f(z) e dz

2

i

i
− −

π −

= =

ω= =
n 1 n 1

-2km /n km
m k k

k 0 k 0

1 1
b f e f

n n
where fk=f(2kπ/n)

just like interpolation!

2π/n apart

64

CSE 421: Introduction to

Algorithms

Divide and Conquer

Beyond the Master Theorem

Median and Quicksort

Paul Beame

65

Today

 Divide and conquer examples

 Simple, randomized median algorithm

 Expected O(n) time

 Not so simple, deterministic median

algorithm

 Worst case O(n) time

 Expected time analysis for Randomized

QuickSort

 Expected O(n log n) time

66

Order problems: Find the kth smallest

 Runtime models
 Machine Instructions

 Comparisons

 Minimum
 O(n) time

 n-1 comparisons

 2nd Smallest
 O(n) time

 ? comparisons

67

Median Problem

 kth smallest for k = n/2

 Easily done in O(n log n) time with
sorting

 How can the problem be solved in O(n)

time?

 Select(k, n) – find the k-th smallest from
a list of length n

68

Divide and Conquer

 T(n) = n + T(αn) for α < 1

 Linear time solution

 Select algorithm – in linear time, reduce
the problem from selecting the k-th
smallest of n values to the j-th smallest

of αn values, for α < 1

69

Quick Select

QSelect(k, S)

Choose element x from S
SL = {y in S | y < x }

SE = {y in S | y = x }

SG = {y in S | y > x }

if | SL | ≥ k
return QSelect(k, SL)

else if |SL| + |SE| ≥ k
return x

else

return QSelect(k - |SL| - |SE|, SG)

70

Implementing
“Choose an element x”

 Ideally, we would choose an x in the
middle, to reduce both sets in half and
guarantee progress

 Method 1
 Select an element at random

 Method 2
 BFPRT Algorithm

 Select an element by a complicated, but
linear time method that guarantees a good
split

71

Random Selection

Consider a call to QSelect(k, S), and let
S’ be the elements passed to the
recursive call.

With probability at least ½, |S’| < ¾|S|

 On average only 2 recursive calls
before the size of S’ is at most 3n/4

bad x bad xgood x good x

elements of S listed in sorted order

72

Expected runtime is O(n)

 Given x, one pass over S to determine
SL, SE, and SG and their sizes: cn time.
 Expect 2cn cost before size of S’ drops to

at most 3|S|/4

 Let T(n) be the expected running time

 T(n) ≤ T(3n/4) + 2cn

≤ 2cn + (¾) 2cn + (¾)2 2cn + …

≤ 2cn (1+ (¾) + (¾)2 + …)

73

Making the algorithm
deterministic

 In O(n) time, find an element that
guarantees that the larger set in the split
has size at most ¾ n

74

Blum-Floyd-Pratt-Rivest-Tarjan
Algorithm

 Divide S into n/5 sets of size 5

 Sort each of these sets of size 5

 Let M be the set of all medians of the
sets of size 5

 Let x be the median of M

 SL= {y in S | y < x}, SG = {y in S | y > x}

 Claim: |SL| < ¾ |S|, |SG| < ¾ |S|

75

BFPRT, Step 1: Construct sets of
size 5, sort each set

13 5 62 32 47 81 64 51 11

15 16 41 12 8 18 98 21 9

32 45 81 73 69 25 96 12 5

14 86 52 25 9 42 91 36 17

95 65 32 81 7 91 6 11 77

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

13, 15, 32, 14, 95, 5, 16, 45, 86, 65, 62, 41, 81, 52, 32, 32, 12, 73, 25, 81, 47, 8,

69, 9, 7, 81, 18, 25, 42, 91, 64, 98, 96, 91, 6, 51, 21, 12, 36, 11, 11, 9, 5, 17, 77

76

BFPRT, Step 2: Find median of
column medians

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

77

BFPRT, Step 2: Find median of
column medians

95 51 77 69 81 91 98 86 81

32 36 17 47 73 81 96 65 62

15 21 11 9 32 42 91 45 52

14 12 9 8 25 25 64 16 41

13 11 5 7 12 18 6 5 32

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Imagine sorting columns by column median

78

BFPRT, Step 2: Find median of
column medians

95 51 77 69 81 91 98 86 81

32 36 17 47 73 81 96 65 62

15 21 11 9 32 42 91 45 52

14 12 9 8 25 25 64 16 41

13 11 5 7 12 18 6 5 32

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Imagine sorting columns by column median

79

BFPRT, Step 2: Find median of
column medians

95 51 77 69 81 91 98 86 81

32 36 17 47 73 81 96 65 62

15 21 11 9 32 42 91 45 52

14 12 9 8 25 25 64 16 41

13 11 5 7 12 18 6 5 32

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Imagine sorting columns by column median

80

BFPRT Recurrence

 Sorting all n/5 lists of size 5
 c’n time

 Finding median of set M of medians
 Recursive computation: T(n/5)

 Computing sets SL, SE, SG and S’
 c’’n time

 Solving selection problem on S’
 Recursive computation: T(3n/4) since |S’|≤ ¾ n

81

T(n) ≤ cn + T(n/5) + T(3n/4) is O(n)

 Key property
 3/4 + 1/5 < 1 (The sum is 19/20)

 Sum of problem sizes decreases by 19/20
factor per level of recursion

 Overhead per level is linear in the sum of the
problem sizes
 Overhead decreases by 19/20 factor per level of

recursion

 Total overhead is linear (sum of geometric series
with constant ratio and linear largest term)

82

Quick Sort

QuickSort(S)

if S is empty, return

Choose element x from S “pivot”
SL = {y in S | y < x }

SE = {y in S | y = x }

SG = {y in S | y > x }

return [QuickSort(SL), SE, QuickSort(SG)]

83

QuickSort

 Pivot Selection

 Choose the median

 T(n) = T(n/2) + T(n/2) + cn, O(n log n)

 Choose arbitrary element

 Worst case – O(n2)

 Average case – O(n log n)

 Choose random pivot

 Expected time – O(n log n)

84

Expected run time for QuickSort:
“Global analysis”

 Count comparisons

 ai, aj – elements in positions i and j in
the final sorted list. pij the probability
that ai and aj are compared

 Expected number of comparisons:

Σi<j pij

85

Lemma: Pij ≤ 2/(j – i + 1)

If ai and aj are compared then it must be

during the call when they end up in different

subproblems

- Before that, they aren’t compared to

each other

- After they aren’t compared to each other

During this step they are only compared if one

of them is the pivot

Since all elements between ai and aj are also in the

subproblem this is 2 out of at least j-i+1 choices

86

Average runtime is 2nln n

Σi<j pij ≤ Σi<j 2/(j-i+1)

87

Average runtime is 2nln n

Σi<j pij ≤ Σi<j 2/(j-i+1)

= 2 1/(k +1)
n-1 n-i

i=1 k=1

write j=k+i

88

Average runtime is 2nln n

Σi<j pij ≤ Σi<j 2/(j-i+1)

= 2

≤ 2 (n-1) (Hn-1)

where Hn=1+1/2+1/3+1/4+...+1/n

= ln n +O(1)

 1/(k +1)
n-1 n-i

i=1 k=1

write j=k+i

89

Average runtime is 2nln n

Σi<j pij ≤ Σi<j 2/(j-i+1)

= 2

≤ 2 (n-1) (Hn-1)

where Hn=1+1/2+1/3+1/4+...+1/n

= ln n +O(1)

≤ 2n ln n +O(n) ≤ 1.387nlog2n

 1/(k +1)
n-1 n-i

i=1 k=1

write j=k+i

