CSE 421: Introduction to Algorithms

Dynamic Programming

Paul Beame

Dynamic Programming

- Dynamic Programming
 - Give a solution of a problem using smaller sub-problems where the parameters of all the possible sub-problems are determined in advance
 - Useful when the same sub-problems show up again and again in the solution

A simple case: Computing Fibonacci Numbers

• Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$

- Recursive algorithm:
 - Fibo(n)
 if n=0 then return(0)
 else if n=1 then return(1)
 else return(Fibo(n-1)+Fibo(n-2))

Memoization (Caching)

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed
- Dynamic Programming
 - Convert memoized algorithm from a recursive one to an iterative one

```
Fibonacci
  Dynamic Programming Version
FiboDP(n):
     F[0]← 0
     F[1] ←1
    for i=2 to n do
       F[i]←F[i-1]+F[i-2]
    endfor
    return(F[n])
```

Fibonacci: Space-Saving Dynamic Programming FiboDP(n): prev← 0 curr←1 for **i=2** to **n** do temp←curr curr←curr+prev **prev**←temp endfor return(**curr**)

Dynamic Programming

- Useful when
 - same recursive sub-problems occur repeatedly
 - Can anticipate the parameters of these recursive calls
 - The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
 - principle of optimality

"Optimal solutions to the sub-problems suffice for optimal solution to the whole problem"

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive calls is "small"
 - e.g., bounded by a low-degree polynomial
 - Can use memoization
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

Weighted Interval Scheduling

- Same problem as interval scheduling except that each request i also has an associated value or weight w_i
 - w_i might be
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used w_i=f_i-s_i
- Goal: Find compatible subset S of requests with maximum total weight

Greedy Algorithms for Weighted Interval Scheduling?

- No criterion seems to work
 - Earliest start time s_i
 - Doesn't work
 - Shortest request time f_i-s_i
 - Doesn't work
 - Fewest conflicts
 - Doesn't work

 	-	 	
 	_	 _	
	•		

Greedy Algorithms for Weighted Interval Scheduling?

- No criterion seems to work
 - Earliest start time s_i
 - Doesn't work
 - Shortest request time f_i-s_i
 - Doesn't work
 - Fewest conflicts
 - Doesn't work
 - Earliest finish fime f_i
 Doesn't work

	_	
 		_
	- 	
	-	_

Greedy Algorithms for Weighted Interval Scheduling?

- No criterion seems to work
 - Earliest start time s_i
 - Doesn't work
 - Shortest request time f_i-s_i
 - Doesn't work
 - Fewest conflicts
 - Doesn't work
 - Earliest finish fime f_i
 - Doesn't work
 - Largest weight w_i
 - Doesn't work

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time f_i so f₁ ≤f₂ ≤...≤ f_n
- Say request i comes before request j if i< j</p>

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time f_i so f₁ ≤f₂ ≤...≤ f_n
- Say request i comes before request j if i< j</p>
- For any request j let p(j) be
 - the largest-numbered request before j that is compatible with j
 - or 0 if no such request exists

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time f_i so f₁ ≤f₂ ≤...≤ f_n
- Say request i comes before request j if i< j</p>
- For any request j let p(j) be
 - the largest-numbered request before j that is compatible with j
 - or 0 if no such request exists

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time f_i so f₁ ≤f₂ ≤...≤ f_n
- Say request i comes before request j if i< j</p>
- For any request j let p(j) be
 - the largest-numbered request before j that is compatible with j
 - or 0 if no such request exists
- Therefore {1,...,p(j)} is precisely the set of requests before j that are compatible with j

- Two cases depending on whether an optimal solution O includes request n
 - If it does include request n then all other requests in O must be contained in {1,...,p(n)}

- Two cases depending on whether an optimal solution O includes request n
 - If it does include request n then all other requests in O must be contained in {1,...,p(n)}
 - Not only that!
 - Any set of requests in {1,...,p(n)} will be compatible with request n
 - So in this case the optimal solution O must contain an optimal solution for {1,...,p(n)}
 - Principle of Optimality"

- All subproblems involve requests {1,..,i} for some i
- For i=1,...,n let OPT(i) be the weight of the optimal solution to the problem {1,...,i}
- The two cases give OPT(n)=max[w_n+OPT(p(n)),OPT(n-1)]

- All subproblems involve requests {1,..,i} for some i
- For i=1,...,n let OPT(i) be the weight of the optimal solution to the problem {1,...,i}
- The two cases give OPT(n)=max[w_n+OPT(p(n)),OPT(n-1)]
- Also
 - $n \in O$ iff $w_n + OPT(p(n)) > OPT(n-1)$

Sort requests and compute array p[i] for each i=1,...,n

- ComputeOpt(n) can take exponential time in the worst case
 - 2ⁿ calls if p(i)=i-1 for every i

- ComputeOpt(n) can take exponential time in the worst case
 - 2ⁿ calls if p(i)=i-1 for every i
- There are only n possible parameters to ComputeOpt

- ComputeOpt(n) can take exponential time in the worst case
 - 2ⁿ calls if p(i)=i-1 for every i
- There are only n possible parameters to ComputeOpt
- Store these answers in an array OPT[n] and only recompute when necessary
 Memoization

- ComputeOpt(n) can take exponential time in the worst case
 - 2ⁿ calls if p(i)=i-1 for every i
- There are only n possible parameters to ComputeOpt
- Store these answers in an array OPT[n] and only recompute when necessary
 Memoization
- Initialize OPT[i]=0 for i=1,...,n

Dynamic Programming: Step 2 – Memoization

```
MComputeOpt(n)
if OPT[n]=0 then
v←ComputeOpt(n)
OPT[n]←v
return(v)
else
return(OPT[n])
endif
```

Dynamic Programming Step 3: Iterative Solution

The recursive calls for parameter n have parameter values i that are < n</p>

```
IterativeComputeOpt(n)

array OPT[0..n]

OPT[0] \leftarrow 0

for i=1 to n

if w<sub>i</sub>+OPT[p[i]] >OPT[i-1] then

OPT[i] \leftarrow w<sub>i</sub>+OPT[p[i]]

else

OPT[i] \leftarrow OPT[i-1]

endif

endif
```

Producing the Solution

	1	2	3	4	5	6	7	8	9
S.	4	2	6	8	11	15	11	12	18
f _i	7	9	10	13	14	17	18	19	20
W _i	3	7	4	5	3	2	7	7	2
p[i]									
OPT[i]									
Used[i]									

	1	2	3	4	5	6	7	8	9
S.	4	2	6	8	11	15	11	12	18
f _i	7	9	10	13	14	17	18	19	20
W _i	3	7	4	5	3	2	7	7	2
p[i]	0	0	0	1	3	5	3	3	7
OPT[i]									
Used[i]									

	1	2	3	4	5	6	7	8	9
S.	4	2	6	8	11	15	11	12	18
f _i	7	9	10	13	14	17	18	19	20
w _i	3	7	4	5	3	2	7	7	2
p[i]	0	0	0	1	3	5	3	3	7
OPT[i]	3	7	7	8	10	12	14	14	16
Used[i]	1	1	0	1	1	1	1	0	1

	1	2	3	4	5	6	7	8	9
S.	4	2	6	8	11	15	11	12	18
f _i	7	9	10	13	14	17	18	19	20
w _i	3	7	4	5	3	2	7	7	2
p[i]	0	0	0	1	3	5	3	3	7
OPT[i]	3	7	7	8	10	12	14	14	16
Used[i]	1	1	0	1	1	1	1	0	1

 $S = \{9, 7, 2\}$

Segmented Least Squares

- Least Squares
 - Given a set P of n points in the plane
 p₁=(x₁,y₁),...,p_n=(x_n,y_n) with x₁<...< x_n determine a line L given by y=ax+b that optimizes the total 'squared error'

• Error(L,P)= Σ_i (y-ax_i-b)²

- A classic problem in statistics
- Optimal solution is known (see text)

Call this line(P) and its error error(P)

What if data seems to follow a piece-wise linear model?

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
- If we chose n-1 pieces we could fit with 0 error
 - Not a fair measure of data fit

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
- If we chose n-1 pieces we could fit with 0 error
 - Not a fair measure of data fit
- Add a penalty of C times the number of pieces to the error to get a total penalty

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
- If we chose n-1 pieces we could fit with 0 error
 - Not a fair measure of data fit
- Add a penalty of C times the number of pieces to the error to get a total penalty
- How do we compute a solution with the smallest possible total penalty?

- Recursive idea
 - If we knew the point p_j where the last line segment began then we could solve the problem optimally for points p₁,...,p_j and combine that with the last segment to get a global optimal solution

- Recursive idea
 - If we knew the point p_j where the last line segment began then we could solve the problem optimally for points p₁,...,p_j and combine that with the last segment to get a global optimal solution
 - Let OPT(j) be the optimal penalty for points {p₁,...,p_j}

- Recursive idea
 - If we knew the point p_j where the last line segment began then we could solve the problem optimally for points p₁,...,p_j and combine that with the last segment to get a global optimal solution
 - Let OPT(j) be the optimal penalty for points {p₁,...,p_j}
 - Total penalty for this solution would be Error({p_j,...,p_n}) + C + OPT(j-1)

- Recursive idea
 - We don't know which point is p_i
 - But we do know that 1≤j≤n
 - The optimal choice will simply be the best among these possibilities

- Recursive idea
 - We don't know which point is p_i
 - But we do know that 1≤j≤n
 - The optimal choice will simply be the best among these possibilities
 - Therefore

$$\begin{split} \mathsf{OPT}(n) = &\min_{1 \leq j \leq n} \left\{ \mathsf{Error}(\{p_j, \dots, p_n\}) + C + \\ & \mathsf{OPT}(j\text{-}1) \right\} \end{split}$$

Dynamic Programming Solution

endif endfor endfor return(**OPT[n]**)

Dynamic Programming Solution

```
SegmentedLeastSquares(n)
 array OPT[0..n]
 array Begin[1..n]
 OPT[0]←0
 for i=1 to n
   OPT[i] \leftarrow Error\{(p_1,...,p_i)\} + C
    Begin[i]←1
   for j=2 to i-1
          e \leftarrow Error\{(p_i, ..., p_i)\} + C + OPT[j-1]
          if e <OPT[i] then
             OPT[i] ←e
              Begin[i]←j
          endif
   endfor
 endfor
 return(OPT[n])
```

Dynamic Programming Solution

```
SegmentedLeastSquares(n)
 array OPT[0..n]
 array Begin[1..n]
 OPT[0]←0
 for i=1 to n
   OPT[i] \leftarrow Error\{(p_1,...,p_i)\} + C
   Begin[i]←1
   for j=2 to i-1
          e \leftarrow Error\{(p_i, \dots, p_i)\} + C + OPT[j-1]
          if e <OPT[i] then
              OPT[i] ←e
              Begin[i]←j
          endif
   endfor
 endfor
 return(OPT[n])
```

```
\label{eq:second} \begin{array}{l} \mbox{FindSegments} \\ \mbox{i} \leftarrow n \\ \mbox{S} \leftarrow \ensuremath{\varnothing} \\ \mbox{while } i > 1 \mbox{ do} \\ \mbox{ compute } Line(\{p_{Begin[i]}, \ldots, p_i\}) \\ \mbox{ output } (p_{Begin[i]}, p_i), \mbox{ Line} \\ \mbox{ i} \leftarrow Begin[i] \\ \mbox{endwhile} \end{array}
```

Knapsack (Subset-Sum) Problem

- Given:
 - integer W (knapsack size)
 - n object sizes x₁, x₂, ..., x_n
- Find:
 - Subset **S** of $\{1, ..., n\}$ such that $\sum_{i \in S} x_i \le W$ but $\sum_{i \in S} x_i$ is as large as possible

Recursive Algorithm

- Let K(n,W) denote the problem to solve for W and x₁, x₂, ..., x_n
- For **n>0**,
 - The optimal solution for K(n,W) is the better of the optimal solution for either

K(n-1,W) or $x_n+K(n-1,W-x_n)$

Recursive Algorithm

- Let K(n,W) denote the problem to solve for W and x₁, x₂, ..., x_n
- For **n>0**,
 - The optimal solution for K(n,W) is the better of the optimal solution for either

K(n-1,W) or $x_n+K(n-1,W-x_n)$

For n=0

 K(0,W) has a trivial solution of an empty set S with weight 0

Common Sub-problems

- Only sub-problems are K(i,w) for
 - i = 0,1,..., n
 - w = 0,1,..., W
- Dynamic programming solution
 - Table entry for each K(i,w)
 - OPT value of optimal soln for first i objects and weight w
 - belong flag is x_i a part of this solution?

Common Sub-problems

- Only sub-problems are K(i,w) for
 - i = 0,1,..., n
 - w = 0,1,..., W
- Dynamic programming solution
 - Table entry for each K(i,w)
 - OPT value of optimal soln for first i objects and weight w
 - belong flag is x_i a part of this solution?
 - Initialize OPT[0,w] for w=0,...,W
 - Compute all OPT[i,*] from OPT[i-1,*] for i>0

Dynamic Knapsack Algorithm

```
for w=0 to W; OPT[0,w] \leftarrow 0; end for
for i=1 to n do
    for w=0 to W do
         OPT[i,w]←OPT[i-1,w]
         belong[i,w]←0
         if \mathbf{w} \ge \mathbf{x}_i then
             val \leftarrow x_i + OPT[i-1, w-x_i]
             if val>OPT[i,w] then
                  OPT[i,w]←val
                   belong[i,w]←1
    end for
end for
return(OPT[n,W])
```

```
Time O(nW)
```

Sample execution on 2, 3, 4, 7 with W=15

- To compute the value OPT of the solution only need to keep the last two rows of OPT at each step
- What about determining the set S?
 - Follow the belong flags O(n) time
 - What about space?

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive algorithm is "small"
 - e.g., bounded by a low-degree polynomial
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

RNA Secondary Structure: Dynamic Programming on Intervals

- RNA: sequence of bases
 - String over alphabet {A, C, G, U}
 U-G-U-A-C-C-G-G-U-A-G-U-A-C-A
- RNA folds and sticks to itself like a zipper
 - A bonds to U
 - C bonds to G
 - Bends can't be sharp
 - No twisting or criss-crossing
- How the bonds line up is called the RNA secondary structure

RNA Secondary Structure

ACGAUACUGCAAUCUCUGUGACGAACCCAGCGAGGUGUA

Another view of RNA Secondary Structure

RNA Secondary Structure

- Input: String $\mathbf{x}_1 \dots \mathbf{x}_n \in \{\mathbf{A}, \mathbf{C}, \mathbf{G}, \mathbf{U}\}^*$
- Output: Maximum size set S of pairs (i,j) such that
 - $\{x_i, x_j\} = \{A, U\}$ or $\{x_i, x_j\} = \{C, G\}$
 - The pairs in S form a matching
 - i<j-4 (no sharp bends)</p>
 - No crossing pairs
 - If (i,j) and (k,l) are in S then it is not the case that they cross as in i<k<jI

Recursion Solution

Try all possible matches for the last bas

OPT(1..j)=MAX(OPT(1..j-1),1+MAX_{k=1..j-5} (OPT(1..k-1)+OPT(k+1..j-1)) x_k matches x_i

OPT(1..j)=MAX(OPT(1..j-1),1+MAX_{k=1..j-5} (OPT(1..k-1)+OPT(k+1..j-1)) x_k matches x_i

x_k matches **x**_j

1+MAX_{k=i..j-5} (OPT(i..k-1)+OPT(k+1..j-1))) x_k matches x_j

RNA Secondary Structure

- 2D Array OPT(i,j) for i≤j represents optimal # of matches entirely for segment i..j
- For $j-i \leq 4$ set **OPT**(i,j)=0 (no sharp bends)
- Then compute OPT(i,j) values when j-i=5,6,...,n-1 in turn using recurrence.
- Return OPT(1,n)
- Total of O(n³) time
- Can also record matches along the way to produce S
 - Similar polynomial-time algorithm for other problems
 - Context-Free Language recognition
 - Optimal matrix products, etc.
 - All use dynamic programming over intervals
Sequence Alignment: Edit Distance

Given:

- Two strings of characters A=a₁ a₂ ... a_n and B=b₁ b₂ ... b_m
- Find:
 - The minimum number of edit steps needed to transform A into B where an edit can be:
 - insert a single character
 - delete a single character
 - substitute one character by another

Applications

- "diff" utility where do two files differ
- Version control & patch distribution save/send only changes
- Molecular biology
 - Similar sequences often have similar origin and function
 - Similarity often recognizable despite millions or billions of years of evolutionary divergence

```
C A - C G T G A T
| | | X |
C A T C G - G T T
```

Sequence Alignment vs Edit Distance

- Sequence Alignment
 - Insert corresponds to aligning with a "-" in the first string
 - Cost δ (in our case 1)
 - Delete corresponds to aligning with a "—" in the second string
 - Cost δ (in our case 1)
 - Replacement of an a by a b corresponds to a mismatch

• Cost α_{ab} (in our case 1 if $a \neq b$ and 0 if a = b)

In Computational Biology this alignment algorithm is attributed to Smith & Waterman

GenBank and WGS Statistics

Recursive Solution

- Sub-problems: Edit distance problems for all prefixes of A and B that don't include all of both A and B
- Let D(i,j) be the number of edits required to transform a₁ a₂ ... a_i into b₁ b₂ ... b_j
- Clearly D(0,0)=0

Computing D(n,m)

- Imagine how best sequence handles the last characters a_n and b_m
- If best sequence of operations
 - deletes a_n then D(n,m)=D(n-1,m)+1
 - inserts b_m then D(n,m)=D(n,m-1)+1
 - replaces a_n by b_m then
 D(n,m)=D(n-1,m-1)+1
 - matches a_n and b_m then
 D(n,m)=D(n-1,m-1)

Recursive algorithm D(n,m)

```
if n=0 then
     return (m)
elseif m=0 then
     return(n)
else
     if a<sub>n</sub>=b<sub>m</sub> then
          replace\text{-}cost \gets \mathbf{0}
                                            cost of substitution of \mathbf{a}_{n} by \mathbf{b}_{m} (if used)
     else
           replace-cost \leftarrow 1
     endif
     return(min{ D(n-1, m) + 1,
                         D(n, m-1) + 1,
                         D(n-1, m-1) + replace-cost\})
```


		A	G	A	С	A	Τ	Τ	G
	0	1	2	3	4	5	6	7	8
G	1	1	1	2	3	4	5	6	7
A	2	1	2	1	2	3	4	5	6
G	3	2	1	2	2	3	4	5	5
T	4	3	2	2	3	3	3	4	5
T	5	4	3	3	3	4	3	3	4
A	6	5	4	3	4	3	4	4	4

86

87

Reading off the operations

- Follow the sequence and use each color of arrow to tell you what operation was performed.
- From the operations can derive an optimal alignment

AGACATTG GAG_TTA

Saving Space

- To compute the distance values we only need the last two rows (or columns)
 - o(min(m,n)) space
- To compute the alignment/sequence of operations
 - seem to need to store all O(mn) pointers/arrow colors
- Nifty divide and conquer variant that allows one to do this in O(min(m,n)) space and retain O(mn) time
 - In practice the algorithm is usually run on smaller chunks of a large string, e.g. m and n are lengths of genes so a few thousand characters
 - Researchers want all alignments that are close to optimal
 - Basic algorithm is run since the whole table of pointers
 (2 bits each) will fit in RAM
 - Ideas are neat, though

- Alignment corresponds to a path through the table from lower right to upper left
 - Must pass through the middle column
- Recursively compute the entries for the middle column from the left
 - If we knew the cost of completing each then we could figure out where the path crossed
 - Problem
 - There are **n** possible strings to start from.
 - Solution
 - Recursively calculate the right half costs for each entry in this column using alignments starting at the other ends of the two input strings!
 - Can reuse the storage on the left when solving the right hand problem

Shortest paths with negative cost edges (Bellman-Ford)

- Dijsktra's algorithm failed with negative-cost edges
 - What can we do in this case?
 - Negative-cost cycles could result in shortest paths with length -∞
- Suppose no negative-cost cycles in G
 - Shortest path from s to t has at most n-1 edges
 - If not, there would be a repeated vertex which would create a cycle that could be removed since cycle can't have –ve cost

Shortest paths with negative cost edges (Bellman-Ford)

- We want to grow paths from s to t based on the # of edges in the path
- Let Cost(s,t,i)=cost of minimum-length path from s to t using up to i hops.
 - Cost(v,t,0)={0 if v=t ∞ otherwise

Bellman-Ford

- Observe that the recursion for Cost(s,t,i) doesn't change t
 - Only store an entry for each v and i
 - Termed OPT(v,i) in the text
- Also observe that to compute OPT(*,i) we only need OPT(*,i-1)
 - Can store a current and previous copy in
 O(n) space.

Bellman-Ford

```
ShortestPath(G,s,t)
    for all \mathbf{v} \in \mathbf{V}
         OPT[v]←∞
    OPT[t]←0
    for i=1 to n-1 do
                                                            O(mn) time
         for all \mathbf{v} \in \mathbf{V} do
             OPT'[v]←min<sub>(v,w)∈E</sub> (c<sub>vw</sub>+OPT[w])
         for all \mathbf{v} \in \mathbf{V} do
              OPT[v]←min(OPT'[v],OPT[v])
     return OPT[s]
```

Negative cycles

- Claim: There is a negative-cost cycle that can reach t iff for some vertex v∈V, Cost(v,t,n)<Cost(v,t,n-1)</p>
- Proof:
 - We already know that if there aren't any then we only need paths of length up to n-1
 - For the other direction
 - The recurrence computes Cost(v,t,i) correctly for any number of hops i
 - The recurrence reaches a fixed point if for every v∈ V, Cost(v,t,i)=Cost(v,t,i-1)
 - A negative-cost cycle means that eventually some Cost(v,t,i) gets smaller than any given bound
 - Can't have a -ve cost cycle if for every v∈ V, Cost(v,t,n)=Cost(v,t,n-1)

Last details

- Can run algorithm and stop early if the OPT and OPT' arrays are ever equal
 - Even better, one can update only neighbors v of vertices w with OPT'[w]≠OPT[w]
- Can store a successor pointer when we compute OPT
 - Homework assignment
- By running for step n we can find some vertex
 v on a negative cycle and use the successor
 pointers to find the cycle

Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices

- Update distances in reverse order of topological sort
- Only one pass through vertices required
- O(**n**+**m**) time

