
1

CSE 421:  Introduction to 

Algorithms

Dynamic Programming

Paul Beame



2

Dynamic Programming

 Dynamic Programming

 Give a solution of a problem using smaller 

sub-problems where the parameters of all 

the possible sub-problems are determined 

in advance

 Useful when the same sub-problems show 

up again and again in the solution



3

A simple case:                
Computing Fibonacci Numbers

 Recall Fn=Fn-1+Fn-2 and F0=0, F1=1

 Recursive algorithm:

 Fibo(n)

if n=0 then return(0)                                             

else if n=1 then return(1)                                     

else return(Fibo(n-1)+Fibo(n-2))



4

Call tree - start

F (6)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)

1 0

F (1)



5

Full call tree

F (6)

F (2)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)F (3)

F (1) F (0)

1 0

F (0)

01

F (1)

F (1) F (0)

1 0
F (1)

F (2) F (1)

1
F (0)

1 0

F (2) F (1)

1
F (0)

1 0

F (1)

1

F (1)



6

Memoization (Caching)

 Remember all values from previous 
recursive calls

 Before recursive call, test to see if value 
has already been computed

 Dynamic Programming
 Convert memoized algorithm from a 

recursive one to an iterative one



7

Fibonacci
Dynamic Programming Version

 FiboDP(n):                                                      

F[0]← 0
F[1] ←1
for i=2 to n do                                          

F[i]←F[i-1]+F[i-2]                                  
endfor                                                   
return(F[n])



8

Fibonacci: Space-Saving Dynamic 
Programming

 FiboDP(n):                                                      

prev← 0
curr←1
for i=2 to n do                              

temp←curr
curr←curr+prev
prev←temp

endfor                                                   
return(curr)



9

Dynamic Programming

 Useful when 
 same recursive sub-problems occur 

repeatedly

 Can anticipate the parameters of these 
recursive calls

 The solution to whole problem can be 
figured out with knowing the internal details 
of how the sub-problems are solved

 principle of optimality
“Optimal solutions to the sub-problems suffice for 

optimal solution to the whole problem” 



10

Three Steps to 
Dynamic Programming

 Formulate the answer as a recurrence 
relation or recursive algorithm

 Show that the number of different values of 
parameters in the recursive calls is “small”
 e.g., bounded by a low-degree polynomial

 Can use memoization

 Specify an order of evaluation for the 
recurrence so that you already have the 
partial results ready when you need them.



11

Weighted Interval Scheduling

 Same problem as interval scheduling 
except that each request i also has an 
associated value or weight wi

 wi might be

 amount of money we get from renting 
out the resource for that time period

 amount of time the resource is being 
used wi=fi-si

 Goal: Find compatible subset S of 
requests with maximum total weight



12

Greedy Algorithms for Weighted 
Interval Scheduling?

 No criterion seems to work
 Earliest start time si

 Doesn’t work

 Shortest request time fi-si

 Doesn’t work

 Fewest conflicts

 Doesn’t work



13

Greedy Algorithms for Weighted 
Interval Scheduling?

 No criterion seems to work
 Earliest start time si

 Doesn’t work

 Shortest request time fi-si

 Doesn’t work

 Fewest conflicts

 Doesn’t work

 Earliest finish fime fi

 Doesn’t work



14

Greedy Algorithms for Weighted 
Interval Scheduling?

 No criterion seems to work
 Earliest start time si

 Doesn’t work

 Shortest request time fi-si

 Doesn’t work

 Fewest conflicts

 Doesn’t work

 Earliest finish fime fi

 Doesn’t work

 Largest weight wi

 Doesn’t work



15

Towards Dynamic Programming: 
Step 1 – A Recursive Algorithm

 Suppose that like ordinary interval scheduling we 

have first sorted the requests by finish time fi so       

f1 ≤f2 ≤…≤ fn

 Say request i comes before request j if i< j



16

Towards Dynamic Programming: 
Step 1 – A Recursive Algorithm

 Suppose that like ordinary interval scheduling we 

have first sorted the requests by finish time fi so        

f1 ≤f2 ≤…≤ fn

 Say request i comes before request j if i< j

 For any request j let p(j) be 

 the largest-numbered request before j that is 

compatible with j

 or 0 if no such request exists
1

2

3

4

5

6

7



17

Towards Dynamic Programming: 
Step 1 – A Recursive Algorithm

 Suppose that like ordinary interval scheduling we 

have first sorted the requests by finish time fi so        

f1 ≤f2 ≤…≤ fn

 Say request i comes before request j if i< j

 For any request j let p(j) be 

 the largest-numbered request before j that is 

compatible with j

 or 0 if no such request exists
1

2

3

4

5

6

7

0

0

1

0

2

1

3



18

Towards Dynamic Programming: 
Step 1 – A Recursive Algorithm

 Suppose that like ordinary interval scheduling we 

have first sorted the requests by finish time fi so        

f1 ≤f2 ≤…≤ fn

 Say request i comes before request j if i< j

 For any request j let p(j) be 

 the largest-numbered request before j that is 

compatible with j

 or 0 if no such request exists

 Therefore {1,…,p(j)} is precisely the set of requests 

before j that are compatible with j



19

Towards Dynamic Programming: 
Step 1 – A Recursive Algorithm

 Two cases depending on whether an 
optimal solution O includes request n
 If it does include request n then all other 

requests in O must be contained in 
{1,…,p(n)}



20

Towards Dynamic Programming: 
Step 1 – A Recursive Algorithm

 Two cases depending on whether an 
optimal solution O includes request n
 If it does include request n then all other 

requests in O must be contained in 
{1,…,p(n)}

 Not only that!
 Any set of requests in {1,…,p(n)} will be 

compatible with request n

 So in this case the optimal solution O must 
contain an optimal solution for {1,…,p(n)}

 “Principle of Optimality”



21

Towards Dynamic Programming: 
Step 1 – A Recursive Algorithm

 All subproblems involve requests {1,..,i} for 
some i

 For i=1,…,n let OPT(i) be the weight of the 
optimal solution to the problem {1,…,i}

 The two cases give

OPT(n)=max[wn+OPT(p(n)),OPT(n-1)]



22

Towards Dynamic Programming: 
Step 1 – A Recursive Algorithm

 All subproblems involve requests {1,..,i} for 
some i

 For i=1,…,n let OPT(i) be the weight of the 
optimal solution to the problem {1,…,i}

 The two cases give

OPT(n)=max[wn+OPT(p(n)),OPT(n-1)]

 Also 

 n∈O iff wn+OPT(p(n))>OPT(n-1)



23

Towards Dynamic Programming: 
Step 1 – A Recursive Algorithm

 Sort requests and compute array p[i] for 
each i=1,…,n

ComputeOpt(n)

if n=0 then return(0)

else

u←ComputeOpt(p[n])

v←ComputeOpt(n-1)

if wn+u>v then return(wn+u)

else return(v)

endif



24

Towards Dynamic Programming: 
Step 2 – Small # of parameters

 ComputeOpt(n) can take exponential time in 
the worst case 
 2n calls if p(i)=i-1 for every i



25

Towards Dynamic Programming: 
Step 2 – Small # of parameters

 ComputeOpt(n) can take exponential time in 
the worst case 
 2n calls if p(i)=i-1 for every i

 There are only n possible parameters to 
ComputeOpt



26

Towards Dynamic Programming: 
Step 2 – Small # of parameters

 ComputeOpt(n) can take exponential time in 
the worst case 
 2n calls if p(i)=i-1 for every i

 There are only n possible parameters to 
ComputeOpt

 Store these answers in an array OPT[n] and 
only recompute when necessary

 Memoization



27

Towards Dynamic Programming: 
Step 2 – Small # of parameters

 ComputeOpt(n) can take exponential time in 
the worst case 
 2n calls if p(i)=i-1 for every i

 There are only n possible parameters to 
ComputeOpt

 Store these answers in an array OPT[n] and 
only recompute when necessary

 Memoization

 Initialize OPT[i]=0 for i=1,…,n



28

Dynamic Programming:                  
Step 2 – Memoization

ComputeOpt(n)

if n=0 then return(0)

else

u←MComputeOpt(p[n])

v←MComputeOpt(n-1)

if wn+u>v then 

return(wn+u)

else return(v)

endif

MComputeOpt(n)

if OPT[n]=0 then 

v←ComputeOpt(n)

OPT[n]←v
return(v)

else

return(OPT[n])

endif



29

Dynamic Programming Step 3: 
Iterative Solution

 The recursive calls for parameter n have parameter 
values i that are < n

IterativeComputeOpt(n)

array OPT[0..n]

OPT[0]←0
for i=1 to n

if wi+OPT[p[i]] >OPT[i-1] then

OPT[i] ←wi+OPT[p[i]]
else

OPT[i] ←OPT[i-1]

endif

endfor



30

Producing the Solution

IterativeComputeOptSolution(n)

array OPT[0..n], Used[1..n]

OPT[0]←0

for i=1 to n

if wi+OPT[p[i]] >OPT[i-1] then

OPT[i] ←wi+OPT[p[i]]

Used[i]←1

else

OPT[i] ← OPT[i-1]

Used[i] ←0

endif

endfor

i←n
S←∅

while i> 0 do
if Used[i]=1 then

S←S ∪ {i}
i←p[i]

else
i←i-1

endif
endwhile



31

Example

4 2 6 8 11 15 11 12 18

7 9 10 13 14 17 18 19 20

3 7 4 5 3 2 7 7 2

si

fi

wi

p[i]

OPT[i]

Used[i]

1         2        3        4         5        6        7         8        9    



32

Example

4 2 6 8 11 15 11 12 18

7 9 10 13 14 17 18 19 20

3 7 4 5 3 2 7 7 2

0 0 0 1 3 5 3 3 7

si

fi

wi

p[i]

OPT[i]

Used[i]

1         2        3        4         5        6        7         8        9    



33

Example

4 2 6 8 11 15 11 12 18

7 9 10 13 14 17 18 19 20

3 7 4 5 3 2 7 7 2

0 0 0 1 3 5 3 3 7

3 7 7 8 10 12 14 14 16

si

fi

wi

p[i]

OPT[i]

Used[i] 1         1        0        1         1        1        1         0        1    

1         2        3        4         5        6        7         8        9    



34

Example

4 2 6 8 11 15 11 12 18

7 9 10 13 14 17 18 19 20

3 7 4 5 3 2 7 7 2

0 0 0 1 3 5 3 3 7

3 7 7 8 10 12 14 14 16

si

fi

wi

p[i]

OPT[i]

Used[i] 1         1        0        1         1        1        1         0        1    

S={9,7,2}

1         2        3        4         5        6        7         8        9    



35

Segmented Least Squares

 Least Squares

 Given a set P of n points in the plane 

p1=(x1,y1),…,pn=(xn,yn) with x1<…< xn

determine a line L given by y=ax+b that 

optimizes the total ‘squared error’

 Error(L,P)=Σi(y-axi-b)2

 A classic problem in statistics

 Optimal solution is known (see text)

 Call this line(P) and its error error(P)



36

Least Squares



37

Segmented Least Squares

 What if data seems to follow a        
piece-wise linear model?



38

Segmented Least Squares



39

Segmented Least Squares



40

Segmented Least Squares

 What if data seems to follow a piece-wise 

linear model?

 Number of pieces to choose is not obvious



41

Segmented Least Squares

 What if data seems to follow a piece-wise 

linear model?

 Number of pieces to choose is not obvious

 If we chose n-1 pieces we could fit with 0
error

 Not a fair measure of data fit



42

Segmented Least Squares

 What if data seems to follow a piece-wise 

linear model?

 Number of pieces to choose is not obvious

 If we chose n-1 pieces we could fit with 0
error

 Not a fair measure of data fit

 Add a penalty of C times the number of 

pieces to the error to get a total penalty



43

Segmented Least Squares

 What if data seems to follow a piece-wise 

linear model?

 Number of pieces to choose is not obvious

 If we chose n-1 pieces we could fit with 0
error

 Not a fair measure of data fit

 Add a penalty of C times the number of 

pieces to the error to get a total penalty

 How do we compute a solution with the 

smallest possible total penalty?



44

Segmented Least Squares

 Recursive idea

 If we knew the point pj where the last line 

segment began then we could solve the 

problem optimally for points p1,...,pj and 

combine that with the last segment to get a 

global optimal solution



45

Segmented Least Squares

 Recursive idea

 If we knew the point pj where the last line 

segment began then we could solve the 

problem optimally for points p1,...,pj and 

combine that with the last segment to get a 

global optimal solution

 Let OPT(j) be the optimal penalty for 

points {p1,…,pj}



46

Segmented Least Squares

 Recursive idea

 If we knew the point pj where the last line 

segment began then we could solve the 

problem optimally for points p1,...,pj and 

combine that with the last segment to get a 

global optimal solution

 Let OPT(j) be the optimal penalty for 

points {p1,…,pj}

 Total penalty for this solution would be 

Error({pj,…,pn}) + C + OPT(j-1)



47

Segmented Least Squares



48

Segmented Least Squares

 Recursive idea

 We don’t know which point is pj

 But we do know that 1≤j≤n

 The optimal choice will simply be the 

best among these possibilities



49

Segmented Least Squares

 Recursive idea

 We don’t know which point is pj

 But we do know that 1≤j≤n

 The optimal choice will simply be the 

best among these possibilities

 Therefore 

OPT(n)=min 1≤j≤n {Error({pj,…,pn}) + C + 

OPT(j-1)}



50

Dynamic Programming Solution

SegmentedLeastSquares(n)

array OPT[0..n]

OPT[0]←0
for i=1 to n

OPT[i]←Error{(p1,…,pi)}+C

for j=2 to i-1  
e←Error{(pj,…,pi)}+C+OPT[j-1]

if e <OPT[i] then

OPT[i] ←e

endif

endfor

endfor

return(OPT[n])



51

Dynamic Programming Solution

SegmentedLeastSquares(n)

array OPT[0..n]

array Begin[1..n]

OPT[0]←0
for i=1 to n

OPT[i]←Error{(p1,…,pi)}+C
Begin[i]←1
for j=2 to i-1  

e←Error{(pj,…,pi)}+C+OPT[j-1]

if e <OPT[i] then

OPT[i] ←e
Begin[i]←j

endif

endfor

endfor

return(OPT[n])



52

Dynamic Programming Solution

SegmentedLeastSquares(n)

array OPT[0..n]

array Begin[1..n]

OPT[0]←0
for i=1 to n

OPT[i]←Error{(p1,…,pi)}+C
Begin[i]←1
for j=2 to i-1  

e←Error{(pj,…,pi)}+C+OPT[j-1]

if e <OPT[i] then

OPT[i] ←e
Begin[i]←j

endif

endfor

endfor

return(OPT[n])

FindSegments

i←n
S←∅

while i> 1 do

compute Line({pBegin[i],…,pi})

output (pBegin[i],pi), Line

i←Begin[i]
endwhile



53

Knapsack (Subset-Sum) Problem

 Given:

 integer W (knapsack size)

 n object sizes  x1, x2, … , xn

 Find:

 Subset S of {1,…, n} such that                  

but         is as large as possible
∈

≤ i
i S

x W

∈

 i
i S

x



54

Recursive Algorithm

 Let K(n,W) denote the problem to solve 
for W and x1, x2, … , xn

 For n>0, 
 The optimal solution for K(n,W) is the better 

of the optimal solution for either 

K(n-1,W) or xn+K(n-1,W-xn)



55

Recursive Algorithm

 Let K(n,W) denote the problem to solve 
for W and x1, x2, … , xn

 For n>0, 
 The optimal solution for K(n,W) is the better 

of the optimal solution for either 

K(n-1,W) or xn+K(n-1,W-xn)

 For n=0
 K(0,W) has a trivial solution of an empty 

set S with weight 0



56

Recursive calls

 Recursive calls on list …,3, 4, 7

K(n,W)

K(n-1,W-7)

K(n-3,W-7)

K(n-2,W-4)

K(n-1,W)

K(n-2,W-7)

K(n-3,W-7)



57

Common Sub-problems

 Only sub-problems are K(i,w) for

 i = 0,1,..., n

 w = 0,1,..., W

 Dynamic programming solution

 Table entry for each K(i,w)

 OPT - value of optimal soln for first i
objects and weight w

 belong flag - is xi a part of this solution?



58

Common Sub-problems

 Only sub-problems are K(i,w) for

 i = 0,1,..., n

 w = 0,1,..., W

 Dynamic programming solution

 Table entry for each K(i,w)

 OPT - value of optimal soln for first i
objects and weight w

 belong flag - is xi a part of this solution?

 Initialize OPT[0,w] for w=0,...,W

 Compute all OPT[i,*] from OPT[i-1,*] for i>0



59

Dynamic Knapsack Algorithm

for w=0 to W;  OPT[0,w] ← 0;   end for
for i=1 to n do

for w=0 to W do
OPT[i,w]←OPT[i-1,w]
belong[i,w]←0
if  w ≥ xi then

val ←xi+OPT[i-1,w-xi]
if val>OPT[i,w] then

OPT[i,w]←val
belong[i,w]←1

end for
end for
return(OPT[n,W])

Time O(nW)



60

Sample execution on 2, 3, 4, 7 with 
W=15



61

Saving Space

 To compute the value OPT of the 
solution only need to keep the last two 
rows of OPT at each step

 What about determining the set S?

 Follow the belong flags O(n) time

 What about space?



62

Three Steps to 
Dynamic Programming

 Formulate the answer as a recurrence 
relation or recursive algorithm

 Show that the number of different values of 
parameters in the recursive algorithm is 
“small”
 e.g., bounded by a low-degree polynomial

 Specify an order of evaluation for the 
recurrence so that you already have the 
partial results ready when you need them.



63

RNA Secondary Structure:
Dynamic Programming on Intervals

 RNA: sequence of bases 

 String over alphabet {A, C, G, U}

U-G-U-A-C-C-G-G-U-A-G-U-A-C-A

 RNA folds and sticks to itself like a zipper

 A bonds to U

 C bonds to G

 Bends can’t be sharp

 No twisting or criss-crossing

 How the bonds line up is called the RNA 

secondary structure



64

RNA Secondary Structure

A

A

A
A

A

A
A CC

C

C

C

C

U

U G

U

U

U

U

G

G

G
G

G

G

G

G

A

A A

A

C

C

C

C

ACGAUACUGCAAUCUCUGUGACGAACCCAGCGAGGUGUA

U

U

G



65

Another view of
RNA Secondary Structure

A---C---A---U---C---U---G---U---G---A---C---G---A---U---G---U---A

UA

A

A

C

C

U

U

U

G

G

G

A

C

U

G

A
No crossing



66

RNA Secondary Structure

 Input: String x1...xn∈{A,C,G,U}*

 Output: Maximum size set S of pairs (i,j)
such that

 {xi,xj}={A,U} or {xi,xj} ={C,G}

 The pairs in S form a matching

 i<j-4 (no sharp bends)

 No crossing pairs

 If (i,j) and (k,l) are in S then it is not the 

case that they cross as in i<k<j<l



67

Recursion Solution

 Try all possible matches for the last bas

jk1

OPT(1..j)=MAX(OPT(1..j-1),1+MAXk=1..j-5 (OPT(1..k-1)+OPT(k+1..j-1))

xk matches xj



68

Recursion Solution

 Try all possible matches for the last 
base

jk1

OPT(1..j)=MAX(OPT(1..j-1),1+MAXk=1..j-5 (OPT(1..k-1)+OPT(k+1..j-1))

xk matches xj



69

Recursion Solution

 Try all possible matches for the last 
base

jk

OPT(1..k-1) OPT(k+1..j-1)

1

OPT(1..j)=MAX(OPT(1..j-1),1+MAXk=1..j-5 (OPT(1..k-1)+OPT(k+1..j-1))

xk matches xj



70

Recursion Solution

 Try all possible matches for the last 
base

jk

OPT(1..k-1) OPT(k+1..j-1)

1

Doesn’t start at 1

OPT(1..j)=MAX(OPT(1..j-1),1+MAXk=1..j-5 (OPT(1..k-1)+OPT(k+1..j-1))

xk matches xj



71

Recursion Solution

 Try all possible matches for the last 
base

jk

OPT(1..k-1) OPT(k+1..j-1)

1

Doesn’t start at 1

OPT(1..j)=MAX(OPT(1..j-1),1+MAXk=1..j-5 (OPT(1..k-1)+OPT(k+1..j-1))

xk matches xj

OPT(i..j)=MAX(OPT(i..j-1),
1+MAXk=i..j-5 (OPT(i..k-1)+OPT(k+1..j-1)))

xk matches xj

General form:



72

RNA Secondary Structure

 2D Array OPT(i,j) for i≤j represents optimal # of 
matches entirely for segment i..j

 For j-i ≤4 set OPT(i,j)=0 (no sharp bends)

 Then compute OPT(i,j) values when  

j-i=5,6,...,n-1 in turn using recurrence.  

 Return OPT(1,n)

 Total of O(n3) time

 Can also record matches along the way to produce S
 Similar polynomial-time algorithm for other problems

 Context-Free Language recognition

 Optimal matrix products, etc.

 All use dynamic programming over intervals



73

Sequence Alignment:
Edit Distance

 Given:

 Two strings of characters A=a1 a2 ... an and 

B=b1 b2 ... bm

 Find:

 The minimum number of edit steps needed 

to transform A into B where an edit can be:

 insert a single character

 delete a single character

 substitute one character by another



74

Applications

 "diff" utility – where do two files differ

 Version control & patch distribution –
save/send only changes

 Molecular biology 
 Similar sequences often have similar origin and 

function

 Similarity often recognizable despite millions or 

billions of years of evolutionary divergence



75

Sequence Alignment vs Edit Distance

 Sequence Alignment
 Insert corresponds to aligning with a “–” in the first 

string

 Cost δ (in our case 1)

 Delete corresponds to aligning with a “–” in the 
second string

 Cost δ (in our case 1)

 Replacement of an a by a b corresponds to a 
mismatch

 Cost αab (in our case 1 if a≠b and 0 if a=b)

 In Computational Biology this alignment 
algorithm is attributed to Smith & Waterman



76



77

Recursive Solution

 Sub-problems: Edit distance problems 
for all prefixes of A and B that don’t 
include all of both A and B

 Let D(i,j) be the number of edits 
required to transform a1 a2 ... ai into     
b1 b2 ... bj

 Clearly D(0,0)=0



78

Computing D(n,m)

 Imagine how best sequence handles 
the last characters an and bm

 If best sequence of operations

 deletes an then D(n,m)=D(n-1,m)+1

 inserts bm then D(n,m)=D(n,m-1)+1

 replaces an by bm then                 

D(n,m)=D(n-1,m-1)+1

 matches an and bm then               

D(n,m)=D(n-1,m-1)



79

Recursive algorithm D(n,m)

if  n=0 then

return (m)

elseif  m=0 then

return(n)

else

if  an=bm then 

replace-cost ← 0

else

replace-cost ← 1

endif

return(min{ D(n-1, m) + 1,                                                                            
D(n, m-1) +1,                     
D(n-1, m-1) + replace-cost})

cost of substitution of an by bm (if used)



80

for j = 0 to m;  D(0,j) ← j; endfor

for i = 1 to n;  D(i,0) ← i; endfor

for i = 1 to n

for j = 1 to m

if  ai=bj then 

replace-cost ← 0

else

replace-cost ← 1

endif

D(i,j) ← min { D(i-1, j) + 1,
D(i, j-1) + 1,
D(i-1, j-1) + replace-cost}

endfor

endfor

Dynamic
Programming

D(i-1, j-1) D(i-1, j)

D(i, j-1) D(i, j)

ai

bj

ai-1

bj-1

...
...

…

…

...
...



81

Example run with 
AGACATTG  and GAGTTA

A       G      A      C       A       T       T      G

0       1       2      3      4       5       6       7      8

0

G 1

A 2

G 3

T 4

T 5

A 6



82

Example run with 
AGACATTG  and GAGTTA

A    G     A     C     A      T     T     G

0      1    2     3      4     5     6     7      8

1      1    1     2      3     4     5     6      7

2

3

4

5

6



83

Example run with 
AGACATTG  and GAGTTA

A    G     A     C     A      T     T     G

0      1    2     3      4     5     6     7      8

1      1    1     2      3     4     5     6      7

2      1    2     1

4

5

6

3



84

Example run with 
AGACATTG  and GAGTTA

A    G     A     C     A      T     T     G

0      1    2     3      4     5     6     7      8

1      1    1     2      3     4     5     6      7

2      1    2     1      2     3     4     5      6

3      2    1     2      2     3     4     5      5 

4

5

6



85

Example run with 
AGACATTG  and GAGTTA

A    G     A     C     A      T     T     G

0      1    2     3      4     5     6     7      8

1      1    1     2      3     4     5     6      7

2      1    2     1      2     3     4     5      6

3      2    1     2      2     3     4     5      5 

4      3    2     2      3     3     3     4      5

5      4    3     3      3     4     3     3      4                  

6      5    4     3      4     3     4     4      4



86

Example run with 
AGACATTG  and GAGTTA

A    G     A     C     A      T     T     G

0      1    2     3      4     5     6     7      8

1      1    1     2      3     4     5     6      7

2      1    2     1      2     3     4     5      6

3      2    1     2      2     3     4     5      5 

4      3    2     2      3     3     3     4      5

5      4    3     3      3     4     3     3      4                  

6      5    4     3      4     3     4     4      4



87

Example run with 
AGACATTG  and GAGTTA

A    G     A     C     A      T     T     G

0 1 2     3      4     5     6     7      8

1      1    1 2      3     4     5     6      7

2      1    2     1 2     3     4     5      6

3      2    1     2      2 3 4     5      5 

4      3    2     2      3     3     3 4      5

5      4    3     3      3     4     3     3 4                  

6      5    4     3      4     3     4     4      4



88

Reading off the operations

 Follow the sequence and use each 
color of arrow to tell you what operation 
was performed.

 From the operations can derive an 
optimal alignment

A G A C A T T G
_ G A G _ T T A



89

Saving Space

 To compute the distance values we only need the 
last two rows (or columns)
 O(min(m,n)) space

 To compute the alignment/sequence of operations 
 seem to need to store all O(mn) pointers/arrow colors

 Nifty divide and conquer variant that allows one to do 
this in O(min(m,n)) space and retain O(mn) time
 In practice the algorithm is usually run on smaller chunks of 

a large string, e.g. m and n are lengths of genes so a few 
thousand characters

 Researchers want all alignments that are close to optimal

 Basic algorithm is run since the whole table of pointers  
(2 bits each) will fit in RAM

 Ideas are neat, though



90

Saving space

 Alignment corresponds to a path through the table 
from lower right to upper left

 Must pass through the middle column

 Recursively compute the entries for the middle 
column from the left 
 If we knew the cost of completing each then we could figure 

out where the path crossed

 Problem

 There are n possible strings to start from.

 Solution
 Recursively calculate the right half costs for each entry in this 

column using alignments starting at the other ends of the two input 
strings!

 Can reuse the storage on the left when solving the right 
hand problem



91

Shortest paths with negative cost 
edges (Bellman-Ford)

 Dijsktra’s algorithm failed with negative-cost 

edges

 What can we do in this case?

 Negative-cost cycles could result in shortest paths 

with length -∞

 Suppose no negative-cost cycles in G

 Shortest path from s to t has at most n-1 edges

 If not, there would be a repeated vertex which 

would create a cycle that could be removed 

since cycle can’t have –ve cost



92

Shortest paths with negative cost 
edges (Bellman-Ford)

 We want to grow paths from s to t based 
on the # of edges in the path

 Let Cost(s,t,i)=cost of minimum-length 
path from s to t using up to i hops.

 Cost(v,t,0)= 0 if v=t

∞ otherwise

 Cost(v,t,i)=min{Cost(v,t,i-1), 

min(v,w)∈E(cvw+Cost(w,t,i-1))}



93

Bellman-Ford

 Observe that the recursion for 
Cost(s,t,i) doesn’t change t

 Only store an entry for each v and i

 Termed OPT(v,i) in the text

 Also observe that to compute OPT(*,i)
we only need OPT(*,i-1)

 Can store a current and previous copy in 

O(n) space.



94

Bellman-Ford

ShortestPath(G,s,t)

for all v∈V

OPT[v]←∞

OPT[t]←0

for i=1 to n-1 do

for all v∈V do

OPT’[v]←min(v,w)∈E (cvw+OPT[w])

for all v∈V do

OPT[v]←min(OPT’[v],OPT[v])

O(mn) time

return OPT[s]



95

Negative cycles

 Claim: There is a negative-cost cycle that can reach t
iff for some vertex v∈V, Cost(v,t,n)<Cost(v,t,n-1)

 Proof: 
 We already know that if there aren’t any then we only need 

paths of length up to n-1

 For the other direction

 The recurrence computes Cost(v,t,i) correctly for any
number of hops i

 The recurrence reaches a fixed point if for every v∈V, 
Cost(v,t,i)=Cost(v,t,i-1)

 A negative-cost cycle means that eventually some 
Cost(v,t,i) gets smaller than any given bound

 Can’t have a –ve cost cycle if for every v∈V,
Cost(v,t,n)=Cost(v,t,n-1)



96

Last details

 Can run algorithm and stop early if the OPT
and OPT’ arrays are ever equal
 Even better, one can update only neighbors v of 

vertices w with OPT’[w]≠OPT[w]

 Can store a successor pointer when we 
compute OPT
 Homework assignment

 By running for step n we can find some vertex 
v on a negative cycle and use the successor 
pointers to find the cycle



97

Bellman-Ford

∞

∞

∞∞

∞

t

6

2

- 4

5

-2

-3
8

7

9

7



98

Bellman-Ford

∞

0

∞∞

∞

t

6

2

- 4

5

-2

-3
8

7

9

7



99

Bellman-Ford

∞

0

7∞

6

t

6

2

- 4

5

-2

-3
8

7

9

7



100

Bellman-Ford

4

0

72

6

t

6

2

- 4

5

-2

-3
8

7

9

7



101

Bellman-Ford

4

0

72

2

t

6

2

- 4

5

-2

-3
8

7

9

7



102

Bellman-Ford

4

0

7-2

2

t

6

2

- 4

5

-2

-3
8

7

9

7



103

Bellman-Ford

4

0

7-2

2

t

6

2

- 4

5

-2

-3
8

7

9

7



104

Bellman-Ford with a DAG

1

4

3

12

10

8

9

11

13

14

5

6

7

2

Edges only go from lower to higher-numbered vertices

• Update distances in reverse order of topological sort

• Only one pass through vertices required

• O(n+m) time


