CSE 421: Introduction to Algorithms

Network Flow

Paul Beame

Bipartite Matching

- Given: A bipartite graph G=(V,E)
 - M_E is a matching in G iff no two edges in M share a vertex
- Goal: Find a matching M in G of maximum possible size

The Network Flow Problem 5 4 consiet а 3 3 27 **4**0 b S 6 5 С Ζ P cannon

How much stuff can flow from s to t?

Net Flow: Formal Definition

Find:

Given:

Two vertices s.t in V (source & sink)

A capacity $c(u,v) \ge 0$ for each $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$ (and c(u,v) = 0 for allnon-edges (u,v))

A digraph G = (V, E) A flow function f: $E \rightarrow R$ s.t., for all **U**,**V**:

•
$$0 \leq f(u,v) \leq c(u,v)$$

[Capacity Constraint]

Maximizing total flow $v(f) = f^{out}(s)$

Notation:

$$f^{in}(\mathbf{v}) = \sum_{e=(u,v)\in E} f(u,v)$$

$$f^{out}(\mathbf{v}) = \sum_{e=(v,w)\in E} f(v,w)$$

Example: A Flow Function

 $f^{in}(u)=f(s,u)=2=f(u,t)=f^{out}(u)$

Example: A Flow Function

- Not shown: f(u,v) if = 0
- Note: max flow ≥ 4 since
 f is a flow function, with v(f) = 4

Max Flow via a Greedy Alg?

While there is an s → t path in G Pick such a path, p Find c, the min capacity of any edge in p Count c towards the flow value Subtract c from all capacities on p Delete edges of capacity 0

Max Flow via a Greedy Alg?

While there is an $s \rightarrow t$ path in G Pick such a path, p Find c, the min capacity of any edge in p Count c towards the flow value Subtract c from all capacities on p Delete edges of capacity 0

This does NOT always find a max flow:

If pick $s \rightarrow b \rightarrow a \rightarrow t$ first, flow stuck at 2. But flow 3 possible.

A Brief History of Flow

#	year	discoverer(s)	bound
1	1951	Dantzig	$O(n^2mU)$
2	1955	Ford & Fulkerson	O(nmU)
3	1970	Dinitz	$O(nm^2)$
		Edmonds & Karp	
4	1970	Dinitz	$O(n^2m)$
5	1972	Edmonds & Karp	$O(m^2 \log U)$
		Dinitz	
6	1973	Dinitz	$O(nm\log U)$
		Gabow	
7	1974	Karzanov	$O(n^3)$
8	1977	Cherkassky	$O(n^2\sqrt{m})$
9	1980	Galil & Naamad	$O(nm\log^2 n)$
10	1983	Sleator & Tarjan	$O(nm\log n)$
11	1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
12	1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
13	1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/(m+2)))$
14	1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
15	1990	Cheriyan et al.	$O(n^3/\log n)$
16	1990	Alon	$O(nm + n^{8/3}\log n)$
17	1992	King et al.	$O(nm + n^{2+\epsilon})$
18	1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
19	1994	King et al.	$\frac{O(nm\log_{m/(n\log n)} n)}{O(m^{3/2}\log(n^2/m)\log U)}$
20	1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$
			$O(n^{2/3}m\log(n^2/m)\log U)$

n = # of vertices m= # of edges U = Max capacity

Source: Goldberg & Rao, **FOCS '97**

2012 Orlin + King et al.

O(nm)

Ven

tat lee in befer

Residual Graph

16

Greed Revisited: An Augmenting Path

New Residual Graph

• e.g. $c_f(s,b)=7$; $c_f(a,x) = 1$; $c_f(x,a) = 3$

Residual Graph & Augmenting Paths

- The residual graph (w.r.t. f) is the graph G_f = (V,E_f), where E_f = { (u,v) | C_f(u,v) > 0 }
 - Two kinds of edges
 - Forward edges
 - f(u,v) < c(u,v) so $c_f(u,v) = c(u,v) f(u,v) > 0$
 - Backward edges

• f(u,v) > 0 so $c_f(v,u) = f(u,v) > 0$

• An *augmenting path* (w.r.t. f) is a simple $s \rightarrow t$ path in G_f .

An Augmenting Path

Claim: Augmented flow is legal

If G_f has an augmenting path P, then the
function f'=augment(f,P) is a legal flow.

Proof:

f' and f differ only on the edges of P so only need to consider such edges (u,v)

Proof: Augmented flow is legal

- If (\mathbf{u}, \mathbf{v}) is a forward edge then $\mathbf{f}'(\mathbf{u}, \mathbf{v}) = \mathbf{f}(\mathbf{u}, \mathbf{v}) + \mathbf{C}_{\mathbf{P}} \leq \mathbf{f}(\mathbf{u}, \mathbf{v}) + \mathbf{C}_{\mathbf{f}}(\mathbf{u}, \mathbf{v})$ $= \mathbf{f}(\mathbf{u}, \mathbf{v}) + \mathbf{C}(\mathbf{u}, \mathbf{v}) - \mathbf{f}(\mathbf{u}, \mathbf{v})$ $= \mathbf{C}(\mathbf{u}, \mathbf{v})$
- If (u,v) is a backward edge then f and f' differ on flow along (v,u) instead of (u,v) f'(v,u)=f(v,u)-C_P ≥ f(v,u)-C_f(u,v) = f(v,u)-f(v,u)=0
- Other conditions like flow conservation still met

Ford-Fulkerson Method Start with f=0 for every edge While G_f has an augmenting path, augment

Questions:

- Does it halt?
- Does it find a maximum flow?
- How fast?

Observations about Ford-Fulkerson Algorithm

- At every stage the capacities and flow values are always integers (if they start that way)
- The flow value v(f')=v(f)+c_P>v(f) for f'=augment(f,P)
 - Since edges of residual capacity 0 do not appear in the residual graph
- Let $C = \sum_{(s,u) \in E} c(s,u)$
 - ν(f)≤C ∕
 - F-F does at most C rounds of augmentation since flows are integers and increase by at least 1 per step

Running Time of Ford-Fulkerson

- For f=0, G_f=G
- Finding an augmenting path in G_f is graph search O(n+m)=O(m) time
- Augmenting and updating G_f is O(n) time
- Total O(mC) time
- Does it find a maximum flow?
 - Need to show that for every flow f that isn't maximum G_f contains an s-t-path

Convenient Definition

•
$$f^{out}(A) = \sum_{v \in A, w \notin A} f(v, w)$$

• $f^{in}(A) = \sum_{v \in A, u \notin A} f(u, v)$

Two claims

Proof of Claim 1

- Consider a set A with s∈ A, t∉ A
- $f^{out}(A) f^{in}(A) = \sum_{v \in A, w \notin A} f(v, w) \sum_{v \in A, u \notin A} f(u, v)$
- We can add flow values for edges with both endpoints in A to **both** sums and they would cancel out so

•
$$f^{out}(A)-f^{in}(A) = \sum_{v \in A, w \in V} f(v,w) - \sum_{v \in A, u \in V} f(u,v)$$

$$= \sum_{v \in A} \left(\sum_{w \in V} f(v,w) - \sum_{u \in V} f(u,v) \right)$$

$$= \sum_{v \in A} \left(f^{out}(v) - f^{in}(v) \right)$$

$$= f^{out}(s) - f^{in}(s)$$

since all other vertices have $f^{out}(v) = f^{in}(v)$

• $v(f) = f^{out}(s)$ and $f^{in}(s)=0$

Proof of Claim 2 • $v(f) = f^{out}(A) - f^{in}(A)$ $\leq f^{out}(\mathbf{A})$ $= \sum_{\mathbf{v} \in \mathbf{A}, \mathbf{w} \notin \mathbf{A}} \mathbf{f}(\mathbf{v}, \mathbf{w})$ $\leq \sum_{\mathbf{v} \in \mathbf{A}, \ \mathbf{w} \notin \mathbf{A}} \mathbf{C}(\mathbf{v}, \mathbf{w})$ $\leq \sum_{\mathbf{v} \in \mathbf{A}, \ \mathbf{w} \in \mathbf{B}} \mathbf{C}(\mathbf{v}, \mathbf{w})$ $= \mathbf{c}(\mathbf{A}, \mathbf{B})$ Lout (A) E 2(AB)

Max Flow / Min Cut Theorem

Claim 3 For any flow f, if G_f has no augmenting path then there is some s-t-cut (A,B) such that v(f)=c(A,B) (proof on next slide)

- We know by Claims 1 & 2 that any flow f' satisfies v(f') ≤ c(A,B) and we know that F-F runs for finite time until it finds a flow f satisfying conditions of Claim 3
 - Therefore by Claim 3 for any flow $\mathbf{f}', \mathbf{v}(\mathbf{f}') \leq \mathbf{v}(\mathbf{f})$
- Theorem (a) F-F computes a maximum flow in G
 (b) For any graph G, the value v(f) of a maximum flow = minimum capacity c(A,B) of any s-t-cut in G

Flow Integrality Theorem

If all capacities are integers

- The max flow has an integer value
- Ford-Fulkerson method finds a max flow in which f(u,v) is an integer for all edges (u,v)

Corollaries & Facts

16.4

- If Ford-Fulkerson terminates, then it's found a max flow.
- It will terminate if c(e) integer or rational (but may not if they're irrational).
- However, may take exponential time, q even with integer capacities:

С

С

а

Bipartite matching as a special case of flow

Integer flows implies each flow is just a subset of the edges

Therefore flow corresponds to a matching $O(\mathbf{mC}) = O(\mathbf{nm})$ running time

Capacity-Scaling algorithm

- General idea:
 - Choose augmenting paths P with 'large' capacity Cp
 - Can augment flows along a path P by any amount ∆ ≤c_P
 - Ford-Fulkerson still works
 - Get a flow that is maximum for the highorder bits first and then add more bits later

Capacity Scaling

213

Residual capacity across min cut is at most (either 0 or 1 times $\Delta = 2$)

Residual capacity across min cut is at most m

 $\Rightarrow \leq \mathbf{m}$ augmentations

Residual capacity across min cut is at most μ (either 0 or 1 times $\Delta=1$)

After \leq **m** augmentations

Capacity Scaling Final

Capacity Scaling Min Cut

Total time for capacity scaling

- log₂ U rounds where U is largest capacity
- At most <u>m</u> augmentations per round
 - Let c_i be the capacities used in the ith round and f_i be the maxflow found in the ith round
 - For any edge (u,v), $c_{i+1}(u,v) \le 2c_i(u,v)+1$
 - i+1st round starts with flow f = 2 f_i
 - Let (A,B) be a min cut from the ith round
 - $v(f_i)=c_i(A,B)$ so $v(f)=2c_i(A,B)$
 - $\quad \nu(f_{i+1}) \leq c_{i+1}(A,B) \leq 2c_i(A,B) + m = \nu(f) + m$
- O(m) time per augmentation
- Total time O(m² log U)

Edmonds-Karp Algorithm

 Use a shortest augmenting path (via Breadth First Search in residual graph)

Time: O(n m²)
Time: O(n m²)

BFS/Shortest Path Lemmas

Distance from s in G_f is never reduced by:

- Deleting an edge Proof: no new (hence no shorter) path created
- Adding an edge (u,v), provided v is nearer than u

Proof: BFS is unchanged, since v visited before (u,v) examined

Key Lemma

Let **f** be a flow, **G**_f the residual graph, and **P** a shortest augmenting path. Then no vertex is closer to **s** after augmentation along **P**.

Proof: Augmentation along P only deletes forward edges, or adds back edges that go to previous vertices along P

Augmentation vs BFS

The Edmonds-Karp Algorithm performs O(mn) flow augmentations

Proof:

Call (**u**,**v**) critical for augmenting path **P** if it's closest to **s** having min residual capacity

It will disappear from G_f after augmenting along P

In order for (u,v) to be critical again the (u,v) edge must re-appear in G_f but that will only happen when the distance to u has increased by 2 (next slide)

It won't be critical again until farther from s so each edge critical at most n/2 times

Edmonds-Karp runs in O(nm²) time

h cut flow may have a yele = mih # of edges Repeat : find a cycle in flow le set value to 0. where delegtin Greedy: start at s take as intedge repeat until (either t i) d l'enneut men one paste a repeated untex v if repeated untex v if repeated untex fund remore cycle and contain until t I that Find are 0(11) NX XXXV Mayer's The for directed of hi maxillow = min at for directed mox # of edge-dismit st = min # of edges whole Jeleben removes all st - part Undracted graphs? (6)

8 J 4 Soluh :and this Screeted sigh nate budy neuro get both a sugla 4 Ch Mengenis for Undrected Gory h x min # at adge disjonit pathy beter = min # f. dres whole delets disconnects and t.

Derited Network with suppliers ord consumer capacition on edges vulex : either a rupplice on Consum confiner: demand dy 20 supplier & demand dy < 0 supply - du wit. Y2 -32/2 (-3)- 3 43 3 42 Circulation dy = f (1(v) - f cut(v) chardle : can we meet all the demands ic. supplies send out all their support and Consumer gets all Their needs filled? (-Need-5 dy 20

Project Selection a.k.a. The Strip Mining Problem

Given

- a directed acyclic graph G=(V,E) representing precedence constraints on tasks (a task points to its predecessors)
- a profit value p(v) associated with each task v∈ V (may be positive or negative)
- Find
 - a set A_⊂V of tasks that is closed under predecessors, i.e. if (u,v)∈ E and u∈ A then v∈ A, that maximizes Profit(A)=Σ_{v∈A} p(v)

Extended Graph G'

- Want to arrange capacities on edges of G so that for minimum s-t-cut (S,T) in G', the set A=S-{s}
 - satisfies precedence constraints
 - has maximum possible profit in G
- Cut capacity with $S = \{s\}$ is just $C = \sum_{v: p(v) \ge 0} p(v)$

■ Profit(A) ≤ C for any set A

- To satisfy precedence constraints don't want any original edges of G going forward across the minimum cut
 - That would correspond to a task in A=S-{s} that had a predecessor not in A=S-{s}
- Set capacity of each of the edges of G to C+1
 - The minimum cut has size at most C

Project Selection

 Claim Any s-t-cut (S,T) in G' such that A=S-{s} satisfies precedence constraints has capacity

 $c(\mathbf{S},\mathbf{T})=\mathbf{C} - \sum_{\mathbf{v}\in\mathbf{A}} \mathbf{p}(\mathbf{v}) = \mathbf{C} - Profit(\mathbf{A})$

- Corollary A minimum cut (S,T) in G' yields an optimal solution A=S-{s} to the profit selection problem
- Algorithm Compute maximum flow f in G', find the set S of nodes reachable from s in G'_f and return S-{s}

Proof of Claim

A=S-{s} satisfies precedence constraints

- No edge of G crosses forward out of A since those edges have capacity C+1
- Only forward edges cut are of the form (v,t) for v∈ A or (s,v) for v∉ A
- The (v,t) edges for v∈A contribute

 $\sum_{\mathbf{v}\in \mathbf{A}: \mathbf{p}(\mathbf{v})<\mathbf{0}} -\mathbf{p}(\mathbf{v}) = -\sum_{\mathbf{v}\in \mathbf{A}: \mathbf{p}(\mathbf{v})<\mathbf{0}} \mathbf{p}(\mathbf{v})$

■ The (s,v) edges for v∉ A contribute

 $\sum_{\mathsf{v} \notin \mathsf{A}: \ \mathsf{p}(\mathsf{v}) \geq \mathbf{0}} \mathsf{p}(\mathsf{v}) = \mathbf{C} - \sum_{\mathsf{v} \in \mathsf{A}: \ \mathsf{p}(\mathsf{v}) \geq \mathbf{0}} \mathsf{p}(\mathsf{v})$

Therefore the total capacity of the cut is

 $\boldsymbol{c}(\boldsymbol{S},\boldsymbol{T}) = \boldsymbol{C} - \boldsymbol{\Sigma}_{\boldsymbol{v} \in \boldsymbol{A}} \ \boldsymbol{p}(\boldsymbol{v}) = \boldsymbol{C} \text{-} \text{Profit}(\boldsymbol{A})$