CSE 421: Introduction to Algorithms

Network Flow

Paul Beame

Bipartite Matching

Given: A bipartite graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$

- $\mathbf{M} \subseteq E$ is a matching in G iff no two edges in \mathbf{M} share a vertex
- Goal: Find a matching M in G of maximum possible size

Bipartite Matching

Bipartite Matching

The Network Flow Problem

- How much stuff can flow from sto t?

Net Flow: Formal Definition

Given:

A digraph $\mathbf{G}=(\mathbf{V}, \mathrm{E})$
Two vertices s,t in V (source \& sink)
A capacity $\mathbf{c}(\mathbf{u}, \mathbf{v}) \geq \mathbf{0}$ for each $(\mathbf{u}, \mathbf{v}) \in \mathrm{E}$ (and $\mathbf{c}(\mathbf{u}, \mathbf{v})=0$ for all non-edges (\mathbf{u}, \mathbf{v}))

Find:
A flow function $\mathbf{f}: \mathbf{E} \rightarrow \mathbf{R}$ s.t., for all \mathbf{u}, \mathbf{v} :
$-\mathbf{0} \leq \mathbf{f}(\mathbf{u}, \mathbf{v}) \leq \mathbf{c}(\mathbf{u}, \mathbf{v})$
[Capacity Constraint]

- if $\mathbf{u} \neq \mathbf{s}, \mathbf{t}$, i.e. ${ }^{\text {fout }}(\mathbf{u})=f^{\text {in }}(\mathbf{u})$
[Flow Conservation]
Maximizing total flow $v(\mathbf{f})=\boldsymbol{f}^{\text {out }}(\mathbf{s})$

Notation:

$$
f^{\text {in }}(\mathbf{v})=\underbrace{\sum_{f} f(\mathbf{u}, \mathbf{v})}_{\text {e(u,v)EE}} f^{\text {out }}(\mathbf{v})=\sum_{\mathrm{e}=(\mathbf{v}, \mathbf{w}) \in \mathrm{E}} \mathbf{f}(\mathbf{v}, \mathbf{w})
$$

Example: A Flow Function

flow/capacity, not .66...

$\left.\mathbf{f i n}^{\mathbf{u}} \mathbf{u}\right)=\mathbf{f}(\mathbf{s}, \mathbf{u})=\mathbf{2}=\mathbf{f}(\mathbf{u}, \mathbf{t})=\mathrm{fout}^{\mathrm{out}}(\mathbf{u})$

Example: A Flow Function

- Not shown: $f(u, v)$ if $=0$
- Note: max flow ≥ 4 since f is a flow function, with $v(f)=4$

Max Flow via a Greedy Alg?

While there is an $s \rightarrow t$ path in G
Pick such a path, p
Find \mathbf{c}, the min capacity of any edge in \mathbf{p}
Count \mathbf{c} towards the flow value
Subtract c from all capacities on p
Delete edges of capacity 0

Max Flow via a Greedy Alg?

While there is an $s \rightarrow t$ path in G
Pick such a path, \mathbf{p}
Find \mathbf{c}, the min capacity of any edge in \mathbf{p}
Count \mathbf{c} towards the flow value
Subtract c from all capacities on p
Delete edges of capacity 0

- This does NOT always find a max flow:

If pick $s \rightarrow b \rightarrow a \rightarrow t$ first, flow stuck at 2.
But flow 3 possible.

A Brief History of Flow

$\#$	year	discoverer(s)	bound
1	1951	Dantzig	$O\left(n^{2} m U\right)$
2	1955	Ford \& Fulkerson	$O(n m U)$
3	1970	Dinitz Edmonds \& Karp	$O\left(n m^{2}\right)$
4	1970	Dinitz	$O\left(n^{2} m\right)$
5	1972	Edmonds \& Karp Dinitz	$O\left(m^{2} \log U\right)$
6	1973	Dinitz Gabow	$O(n m \log U)$
7	1974	Karzanov	$O\left(n^{3}\right)$
8	1977	Cherkassky	$O\left(n^{2} \sqrt{m}\right)$
9	1980	Galil \& Naamad	$O\left(n m \log { }^{2} n\right)$
10	1983	Sleator \& Tarjan	$O(n m \log n)$
11	1986	Goldberg \& Tarjan	$O\left(n m \log \left(n^{2} / m\right)\right)$
12	1987	Ahuja \& Orlin	$O\left(n m+n^{2} \log U\right)$
13	1987	Ahuja et al.	$O(n m \log (n \sqrt{\log U /(m+2))}$
14	1989	Cheriyan \& Hagerup	$E\left(n m+n^{2} \log { }^{2} n\right)$
15	1990	Cheriyan et al.	$O\left(n^{3} / \log ^{n} n\right)$
16	1990	Alon	$O\left(n m+n^{8 / 3} \log n\right)$
17	1992	King et al.	$O\left(n m+n^{2+\epsilon)}\right.$
18	1993	Phillips \& Westbrook	$O\left(n m\left(\log m / n n+\log { }^{2+\epsilon} n\right)\right)$
19	1994	King et al.	$O\left(n m \log m_{m / n \log n)} n\right)$
20	1997	Goldberg \& Rao	$O\left(m^{3 / 2} \log ^{2}\left(n^{2} / m\right) \log U\right)$
$O\left(n^{2 / 3} m \log \left(n^{2} / m\right) \log U\right)$			

$\mathrm{n}=$ \# of vertices
$\mathrm{m}=$ \# of edges
$U=$ Max capacity

2012 Orlin + King et al.
$O(n m)$

Greed Revisited: Residual Graph \& Augmenting Path

Greed Revisited: Residual Graph \& Augmenting Path

Residual Graph

Greed Revisited: Residual Graph \& Augmenting Path

Greed Revisited: Residual Graph \& Augmenting Path

Greed Revisited: Residual Graph \& Augmenting Path

Greed Revisited: An Augmenting Path

Residual Capacity

- The residual capacity (w.r.t. f) of (u,v) is $\mathbf{c}_{\mathrm{f}}(\mathbf{u}, \mathbf{v})=\mathbf{c}(\mathbf{u}, \mathbf{v})-\mathbf{f}(\mathbf{u}, \mathbf{v})$ if $f(\mathbf{u}, \mathbf{v}) \leq \mathbf{c}(\mathbf{u}, \mathbf{v})$ and $\mathbf{c}_{f}(\mathbf{u}, \mathbf{v})=\mathbf{f}(\mathbf{v}, \mathbf{u})$ if $f(\mathbf{v}, \mathbf{u})>0$

- e.g. $c_{f}(\mathbf{s}, \mathbf{b})=7 ; c_{f}(\mathbf{a}, \mathbf{x})=\mathbf{1} ; \mathbf{c}_{f}(\mathbf{x}, \mathbf{a})=\mathbf{3}$

Residual Graph \& Augmenting Paths

- The residual graph (w.r.t. f) is the graph $\mathbf{G}_{\mathrm{f}}=\left(\mathbf{V}, \mathbf{E}_{\mathrm{f}}\right)$, where

$$
\mathbf{E}_{\mathbf{f}}=\left\{(\mathbf{u}, \mathbf{v}) \mid \mathbf{c}_{f}(\mathbf{u}, \mathbf{v})>0\right\}
$$

- Two kinds of edges
- Forward edges

$$
-f(\mathbf{u}, \mathbf{v})<\mathbf{c}(\mathbf{u}, \mathbf{v}) \text { so } \mathbf{c}_{\mathbf{f}}(\mathbf{u}, \mathbf{v})=\mathbf{c}(\mathbf{u}, \mathbf{v})-\mathbf{f}(\mathbf{u}, \mathbf{v})>\mathbf{0}
$$

- Backward edges
- $\mathbf{f}(\mathbf{u}, \mathbf{v})>0$ so $\mathbf{c}_{\mathrm{f}}(\mathbf{v}, \mathbf{u})=\mathbf{f}(\mathbf{u}, \mathbf{v})>\mathbf{0}$
- An augmenting path (w.r.t. f) is a simple $\mathbf{s} \rightarrow \mathbf{t}$ path in G_{f}.

A Residual Network

An Augmenting Path

Augmenting A Flow

augment(\mathbf{f}, \mathbf{P})
$\mathbf{C}_{\mathbf{P}} \leftarrow \min _{(\mathbf{u}, \mathbf{v}) \in \mathbf{P}} \mathbf{C}_{\mathbf{f}}(\mathbf{u}, \mathbf{v}) \quad$ "bottlenec keP)"
for each $\mathbf{e} \in \mathbf{P}$
if \mathbf{e} is a forward edge then increase $\mathbf{f}(\mathbf{e})$ by $\mathbf{C}_{\mathbf{P}}$
else (e is a backward edge)
decrease $\mathbf{f}\left(\mathbf{e}^{\prime}\right)$ by $\mathbf{c}_{\mathbf{p}}$ where $\mathbf{e}^{\prime}=$ reverse of \mathbf{e} endif
endfor
return (f)

Augmenting A Flow

Claim: Augmented flow is legal

If G_{f} has an augmenting path P, then the function $f^{\prime}=\operatorname{augment}(\mathbf{f}, \mathbf{P})$ is a legal flow.

Proof:

- f^{\prime} and f differ only on the edges of P so only need to consider such edges (\mathbf{u}, \mathbf{v})

Proof: Augmented flow is legal

- If (\mathbf{u}, \mathbf{v}) is a forward edge then

$$
\begin{aligned}
\mathbf{f}^{\prime}(\mathbf{u}, \mathbf{v})=\mathbf{f}(\mathbf{u}, \mathbf{v})+\mathbf{c}_{\mathbf{p}} & \leq \mathbf{f}(\mathbf{u}, \mathbf{v})+\mathbf{c}_{\mathbf{f}}(\mathbf{u}, \mathbf{v}) \\
& =\mathbf{f}(\mathbf{u}, \mathbf{v})+\mathbf{c}(\mathbf{u}, \mathbf{v})-\mathbf{f}(\mathbf{u}, \mathbf{v}) \\
& =\mathbf{c}(\mathbf{u}, \mathbf{v})
\end{aligned}
$$

- If (\mathbf{u}, \mathbf{v}) is a backward edge then \mathbf{f} and \mathbf{f} ' differ on flow along (\mathbf{v}, \mathbf{u}) instead of (\mathbf{u}, \mathbf{v})

$$
\begin{aligned}
\mathbf{f}^{\prime}(\mathbf{v}, \mathbf{u})=\mathbf{f}(\mathbf{v}, \mathbf{u})-\mathbf{c}_{\mathbf{P}} & \geq \mathbf{f (\mathbf { v } , \mathbf { u }) - \mathbf { c } _ { \mathbf { f } } (\mathbf { u } , \mathbf { v })} \\
& =\mathbf{f}(\mathbf{v}, \mathbf{u})-\mathbf{f}(\mathbf{v}, \mathbf{u})=\mathbf{0}
\end{aligned}
$$

- Other conditions like flow conservation still met

Ford-Fulkerson Method

Start with $\mathrm{f}=0$ for every edge
While $\underline{G}_{\mathbf{f}}$ has an augmenting path, augment

- Questions:
- Does it halt?
- Does it find a maximum flow?
- How fast?

Observations about Ford-Fulkerson Algorithm

- At every stage the capacities and flow values are always integers (if they start that way)
- The flow value $v\left(\mathbf{f}^{\prime}\right)=v(\mathbf{f})+\mathbf{C}_{\mathrm{p}}>v(\mathbf{f})$ for $\mathbf{f}^{\prime}=$ augment(f,P)
- Since edges of residual capacity 0 do not appear in the residual graph
- Let $\mathbf{C}=\sum_{(\mathbf{s}, \mathrm{u}) \in \mathrm{E}} \mathbf{C}(\mathbf{s}, \mathbf{u})$
- $v(f) \leq C$,
- F-F does at most C rounds of augmentation since flows are integers and increase by at least 1 per step

Running Time of Ford-Fulkerson

- For $\mathrm{f}=\mathbf{0}, \mathrm{G}_{\mathrm{f}}=\mathbf{G}$
- Finding an augmenting path in G_{f} is graph search $O(n+m)=O(m)$ time
- Augmenting and updating G_{f} is $\mathrm{O}(\mathbf{n})$ time
- Total O(mC) time
- Does it find a maximum flow?
- Need to show that for every flow f that isn't maximum G_{f} contains an s -t-path

Cuts

- A partition (\mathbf{A}, \mathbf{B}) of \mathbf{V} is an s-t-cut if
- $\mathbf{s} \in \mathbf{A}, \mathbf{t} \in \mathbf{B}$
- Capacity of cut (A, B) is $\mathbf{c}(A, B)=\sum_{\substack{u \in A \\ u \in B}} \mathbf{c}(\mathbf{u}, \mathbf{v})$

Convenient Definition

- $\mathbf{f i n}(\mathbf{A})=\sum_{v \in A, u \notin A} f(\mathbf{u}, \mathbf{v})$ edta sim B कn A

Two claims

- For any flow f and any cut (A,B), $f^{\circ u t}(s)-f^{\prime} /(s)$

1) the net flow across the cut equals the total flow, i.e., $v(f)=$ fout $(\mathbf{A})-\mathrm{fin}^{\mathrm{f}}(\mathbf{A})$, and
2) the net flow across the cut cannot exceed the capacity of the cut, i.e. fout $(\mathbf{A})-\mathrm{f}^{\text {in }}(\mathbf{A}) \leq \mathbf{c}(\mathbf{A}, B)$

- Corollary: ${ }^{\text {VIt })}$ < cut Max flow \leq Min cut

Proof of Claim 1

- Consider a set \mathbf{A} with $\mathbf{s} \in \mathbf{A}, \mathbf{t} \notin \mathbf{A}$
- $f^{\text {out }}(\mathbf{A})-\mathrm{fin}^{\mathrm{fin}}(\mathbf{A})=\sum_{\mathbf{v} \in \mathrm{A}, \mathbf{w} \notin \mathrm{A}} f(\mathbf{v}, \mathbf{w})-\sum_{\mathbf{v} \in \mathrm{A}, \mathbf{u} \notin \mathrm{A}} f(\mathbf{u}, \mathbf{v})$
- We can add flow valües for edges with both endpoints in A to both sums and they would cancel out so
- $f^{\text {out }}(\mathbf{A})-\boldsymbol{f i n}^{\operatorname{in}}(\mathbf{A})=\sum_{\mathbf{v} \in \mathrm{A}, \mathbf{w} \in \mathbf{V}} \mathbf{f}(\mathbf{v}, \mathbf{w})-\sum_{\mathbf{v} \in \mathrm{A}, \mathbf{u} \in \mathrm{V}} \mathbf{f}(\mathbf{u}, \mathbf{v})$

$$
=\Sigma_{\mathbf{v} \in \mathcal{A}}\left(\Sigma_{\mathbf{w} \in \mathrm{V}} \mathbf{f}(\mathbf{v}, \mathbf{w})-\Sigma_{\mathbf{u} \in \mathrm{V}} \mathbf{f}(\mathbf{u}, \mathbf{v})\right)
$$

$$
\left.=\sum_{v \in f} \text { fout }(v)-\mathbf{f i n}^{\text {in }}(\mathbf{v})\right)
$$

$$
=f^{\text {out }}(\mathbf{S})-f^{\text {in }}(\mathbf{S})
$$

since all other vertices have $\mathrm{fout}^{(v)}=\mathrm{fin}^{\mathrm{in}}(\mathbf{v})$

- $v(\mathbf{f})=\mathbf{f o u t}^{(\mathbf{s})}$ and $\mathrm{fin}^{(\mathbf{s})}=0$

Proof of Claim 2

$$
\begin{aligned}
v(f) & =f^{\text {out }}(\mathbf{A})-\boldsymbol{f}^{\text {in }}(\mathbf{A}) \geqslant 0 \\
& \leq f^{\text {out }}(\mathbf{A}) \\
& =\sum_{\mathbf{v} \in \mathbf{A}, \mathbf{w} \notin \mathbf{A}} \mathbf{f (\mathbf { v } , \mathbf { w })} \\
& \leq \sum_{\mathbf{v} \in \mathbf{A}, \mathbf{w} \notin \mathbf{A}} \mathbf{C (\mathbf { v } , \mathbf { w })} \\
& \leq \sum_{\mathbf{v} \in \mathbf{A}, \mathbf{w} \in \mathbf{B}} \mathbf{C}(\mathbf{v}, \mathbf{w}) \\
& =\mathbf{c}(\mathbf{A}, \mathbf{B})
\end{aligned}
$$

$$
f^{\text {out }}\left(A_{1}\right) \leq c\left(A_{1} B\right)
$$

Max Flow / Min Cut Theorem

Claim 3 For any flow \mathbf{f}, if \mathbf{G}_{f} has no augmenting

 path then there is some s-t-cut (\mathbf{A}, \mathbf{B}) such that $v(\mathbf{f})=\mathbf{c}(\mathbf{A}, \mathbf{B})$ (proof on next slide)- We know by Claims $1 \& 2$ that any flow f' satisfies $v\left(\mathbf{f}^{\prime}\right) \leq \mathbf{c}(\mathbf{A}, \mathbf{B})$ and we know that F -F runs for finite time until it finds a flow fatisfying conditions of Claim 3
- Therefore by Claim 3 for any flow $\mathbf{f}^{\prime}, v\left(\mathbf{f}^{\prime}\right) \leq v(\mathbf{f})$
- Theorem (a) F-F computes a maximum flow in G
(b) For any graph G, the value $v(f)$ of a maximum flow = minimum capacity $\mathbf{c}(\mathbf{A}, \mathbf{B})$ of any $\mathbf{s}-\mathrm{t}$-cut in \mathbf{G}

Claim 3

$$
1,2,3.9 \rightarrow k R T
$$

Let $\mathbf{A}=\left\{\mathbf{u} \mid \exists\right.$ an path in \mathbf{G}_{f} from \mathbf{s} to $\left.\mathbf{u}\right\}$ $\mathbf{B}=\mathbf{V}-\mathbf{A} ; \mathbf{s} \in \mathbf{A}, \mathbf{t} \in \mathbf{B}$

This is true for every edge crossing the cut, ie.

Flow Integrality Theorem

If all capacities are integers

- The max flow has an integer value
- Ford-Fulkerson method finds a max flow in which $f(u, v)$ is an integer for all edges (u, v)

Corollaries \& Facts

- If Ford-Fulkerson terminates, then it's found a max flow.
- It will terminate if $\mathbf{c}(\mathbf{e})$ integer or rational (but may not if they're irrational).
- However, may take exponential time, φ even with integer capacities:

G
$c=10^{9}$, say

Bipartite matching as a special case of flow

Integer flows implies each flow is just a subset of the edges
Therefore flow corresponds to a matching
$\mathrm{O}(\mathrm{mC})=\mathrm{O}(\mathrm{nm})$ running time

Capacity-Scaling algorithm

- General idea:
- Choose augmenting paths P with 'large’ capacity \mathbf{C}_{P}
- Can augment flows along a path \mathbf{P} by any amount $\Delta \leq \mathbf{C}_{\mathrm{P}}$
- Ford-Fulkerson still works
- Get a flow that is maximum for the highorder bits first and then add more bits later

Capacity Scaling

reprosectapaits in binears

Capacity Scaling

Capacity Scaling Bit 1

F.F with 0/1 capacities

Capacity Scaling Bit 1

O(nm) time

Capacity Scaling Bit 2

Residual capacity across min cut is at most $/ \mathrm{m}$ (either 0 or 1 times $\Delta=2$) \# of steps $O\left(\mathrm{~cm}^{2}\right)$

Capacity Scaling Bit 2

Residual capacity across min cut is at most m
$\Rightarrow \leq \mathrm{m}$ augmentations

Capacity Scaling Bit 3

Residual capacity across min cut is at most m (either 0 or 1 times $\Delta=1$)

Capacity Scaling Bit 3

After $\leq \mathbf{m}$ augmentations

Capacity Scaling Final

Capacity Scaling Min Cut

Total time for capacity scaling

- $\log _{2} \mathrm{U}$ rounds where U is largest capacity
- At most maugmentations per round
- Let c_{i} be the capacities used in the $i^{\text {th }}$ round and f_{i} be the maxflow found in the $i^{\text {th }}$ round
- For any edge (\mathbf{u}, \mathbf{v}), $\mathbf{c}_{\mathrm{i}+1}(\mathbf{u}, \mathbf{v}) \leq \mathbf{2 c}_{\mathrm{i}}(\mathbf{u}, \mathbf{v})+1$
- $\mathrm{i}+1^{\text {st }}$ round starts with flow $\mathrm{f}=2 \mathrm{f}_{\mathrm{i}}$
- Let (\mathbf{A}, \mathbf{B}) be a min cut from the $\mathrm{i}^{\text {th }}$ round
$\because v\left(f_{i}\right)=c_{i}(A, B)$ so $v(f)=2 c_{i}(A, B)$
- $v\left(f_{i+1}\right) \leq \mathbf{c}_{\mathbf{i}+1}(A, B) \leq \mathbf{2} \mathbf{c}_{\mathbf{i}}(A, B)+\mathbf{m}=v(\mathbf{f})+\mathbf{m}$
- $\mathrm{O}(\mathrm{m})$ time per augmentation
- Total time $O\left(\mathbf{m}^{2} \log \mathbf{U}\right)$

Edmonds-Karp Algorithm

- Use a shortest augmenting path (via Breadth First Search in residual graph)
- Time: $\mathrm{O}\left(\mathrm{n} \mathrm{m}^{2}\right)$

BFS/Shortest Path Lemmas residua grep

Distance from \mathbf{s} in $\underline{G}_{\boldsymbol{f}}$ is never reduced by:

- Deleting an edge

Proof: no new (hence no shorter) path created

- Adding an edge (u, v), provided v is nearer than u
Proof: BFS is unchanged, since \mathbf{v} visited before

Key Lemma

Let f be a flow, G_{f} the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along \mathbf{P}.

Proof: Augmentation along P only deletes forward edges, or adds back edges that go to previous vertices along \mathbf{P}

Augmentation vs BFS

Theorem

The Edmonds-Karp Algorithm performs O(mn) flow augmentations

Proof:
Call (u,v) critical for augmenting path \mathbf{P} if it's closest to s havïng min residual capacity

It will disappear from G_{f} after augmenting along \mathbf{P}
In order for (\mathbf{u}, \mathbf{v}) to be critical again the (\mathbf{u}, \mathbf{v}) edge must re-appear in G_{f} but that will only happen when the distance to u has increased by 2 (next slide)

It won't be critical again until farther from s so each edge critical at most $\mathbf{n} / 2$ times

Critical Edges in G_{f}

Shortest s-t path P in G_{f}

critical edge $\mathbf{d}_{\mathrm{f}}\left(\mathbf{s}, \overline{\mathbf{v})=}=\mathbf{d}_{\mathrm{f}}(\mathbf{s}, \mathbf{u})+\mathbf{1}\right.$ since this is a shortest path
After augmenting along \mathbf{P}

For (\mathbf{u}, \mathbf{v}) to be critical later for some flow \mathbf{f}^{\prime} it must be in $\mathbf{G}_{\mathbf{~}}$, so must have augmented along a shortest path containing (v, u)

Corollary

- Edmonds-Karp runs in $\mathrm{O}\left(\mathrm{nm}^{2}\right)$ time

Applications of Networh
Flow

1. Edge-Disjoint Pathe in Graph::

Given vectios s,uplead t in G, find al manyinplath as possible
fro s to t That don't shave any edgel
(a) Dirated Guaghs:

$\min _{\text {cut }} C \leqslant n-1$ capacity 1 on all edgey
compute a max flow ulany F-F timo $O(m n)$
supperflaw, F-F all flow are inteyer
naxflaw max thicu is flow 三sed of edgel where Him =1

Mincut n
flow may have a cyele $=$ min\# Repact: fund a yele in flow of edyer whorodelecthin Grecely: stait at s tahr an antedge disconnectip repeat until (eithein $t i$
 reached or repeated valex vo is reprated vatex foult renvecycte and cil +

$$
0 *+x+L \quad O(\mathrm{~m})
$$

Mayeu's Then for dreceted go hi maxflow = minest for divectel graph.
max a f edge-disjont s.t. radhr
= min of of edyel whole deledes remones allot -janty
(b) Undracted graphs?

never gets bots
on a sayle u
auh.

Mengeíl for Undiracted Gery h_{s} min \# of odgo.dessont gathy botere s and t
$=$ min H f e dises whore delets dil connelfs s and t.

Diakd Netwath wite sepplion oud consenar copacitios on edgal
voutex: ethen a rupplice on \checkmark conpenas
conpuner: demand $d_{v}>0$
\checkmark
supplier ε demand $d_{v}<0$ supoly $-d u$ wents
(-5) 3
(2)

Circuitition $d_{v}=f^{\text {in }}(v)-f^{\text {cut }}(v)$ witu
denarenta: can we meet all the denends ie. suppliar send unt $n l l$ G their suppens and consures gets all theirer needs filled?

$$
\text { Nead= } \sum_{v} d v=0
$$

Project Selection
 a.k.a. The Strip Mining Problem

- Given
- a directed acyclic graph G=(V,E) representing precedence constraints on tasks (a task points to its predecessors)
- a profit value $\mathbf{p}(\mathbf{v})$ associated with each task $\mathbf{v} \in \mathrm{V}$ (may be positive or negative)
- Find
- a set $\mathbf{A} \subseteq \mathbf{V}$ of tasks that is closed under predecessors, i.e. if $(\mathbf{u}, \mathbf{v}) \in E$ and $\mathbf{u} \in \mathbf{A}$ then $\mathbf{v} \in \mathbf{A}$, that maximizes $\operatorname{Profit}(\mathbf{A})=\Sigma_{\mathbf{v} \in \mathbf{A}} \mathbf{p}(\mathbf{v})$

Project Selection Graph

Each task points to its predecessor tasks

Extended Graph

\odot

(1)

Extended Graph G’

For each vertex \mathbf{v} If $\mathbf{p}(\mathbf{v}) \geq \mathbf{0}$ add (\mathbf{s}, \mathbf{v}) edge with capacity $\mathbf{p}(\mathbf{v})$ If $\mathbf{p}(\mathbf{v})<\mathbf{0}$ add ($\mathbf{v}, \mathbf{t})$ edge with capacity $-\mathbf{p}(\mathbf{v})$

Extended Graph G'

- Want to arrange capacities on edges of G so that for minimum s-t-cut (S,T) in G', the set $\mathbf{A}=\mathbf{S}-\{\mathbf{s}\}$
- satisfies precedence constraints
- has maximum possible profit in G
- Cut capacity with $S=\{\mathbf{s}\}$ is just $\mathbf{C}=\Sigma_{v: p(v) \geq 0} \mathbf{p}(\mathbf{v})$
- Profit(\mathbf{A}) $\leq \mathbf{C}$ for any set \mathbf{A}
- To satisfy precedence constraints don't want any original edges of G going forward across the minimum cut
- That would correspond to a task in $\mathbf{A}=\mathbf{S}-\{\mathbf{s}\}$ that had a predecessor not in $\mathbf{A}=\mathbf{S}-\{\mathbf{s}\}$
- Set capacity of each of the edges of G to $\mathbf{C + 1}$
- The minimum cut has size at most \mathbf{C}

Extended Graph G’

Extended Graph G’

```
Cut value
\(=13+3+2+3+4\)
\(=13+3\)
+C-4-8-10-11-12-14
```


Project Selection

- Claim Any s-t-cut (S,T) in G' such that $\mathrm{A}=\mathbf{S}-\{\mathbf{s}\}$ satisfies precedence constraints has capacity

$$
c(\mathbf{S}, \mathbf{T})=\mathbf{C}-\Sigma_{\mathbf{v} \in \mathbf{A}} \mathbf{p}(\mathbf{v})=\mathbf{C}-\operatorname{Profit}(\mathbf{A})
$$

- Corollary A minimum cut (S,T) in G' yields an optimal solution $\mathbf{A}=\mathbf{S}-\{\mathbf{s}\}$ to the profit selection problem
- Algorithm Compute maximum flow f in G^{\prime}, find the set S of nodes reachable from \mathbf{s} in \mathbf{G}_{f}^{\prime} and return \mathbf{S} - $\{\mathbf{s}\}$

Proof of Claim

- $\mathrm{A}=\mathrm{S}-\{\mathbf{s}\}$ satisfies precedence constraints
- No edge of G crosses forward out of A since those edges have capacity C+1
- Only forward edges cut are of the form (\mathbf{v}, \mathbf{t}) for $\mathbf{v} \in \mathbf{A}$ or (\mathbf{s}, \mathbf{v}) for $\mathbf{v} \notin \mathbf{A}$
- The (\mathbf{v}, \mathbf{t}) edges for $\mathbf{v} \in \mathbf{A}$ contribute

$$
\sum_{v \in A: p(v)<0}-p(v)=-\sum_{v \in A: p(v)<0} p(v)
$$

- The (\mathbf{s}, \mathbf{v}) edges for $\mathbf{v} \notin \mathbf{A}$ contribute

$$
\sum_{v \notin A: p(v) \geq 0} p(v)=C-\sum_{v \in A: p(v) \geq 0} p(v)
$$

- Therefore the total capacity of the cut is

$$
\mathbf{c}(\mathbf{S}, \mathbf{T})=\mathbf{C}-\sum_{\mathbf{v} \in \mathbf{A}} \mathbf{p}(\mathbf{v})=\mathbf{C}-\operatorname{Profit}(\mathbf{A})
$$

