CSE 421: Introduction to Algorithms

Network Flow

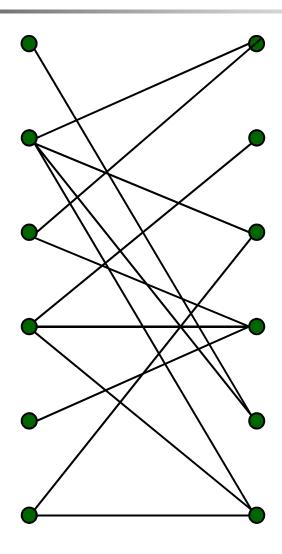
Paul Beame

Bipartite Matching

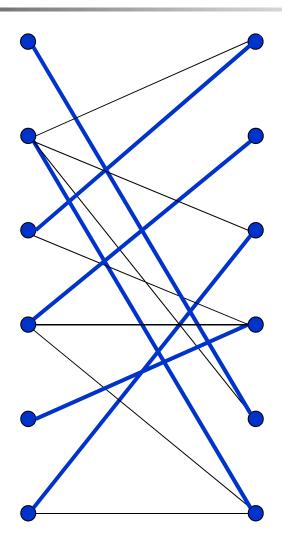
- Given: A bipartite graph G=(V,E)
 - McE is a matching in G iff no two edges in M share a vertex

 Goal: Find a matching M in G of maximum possible size

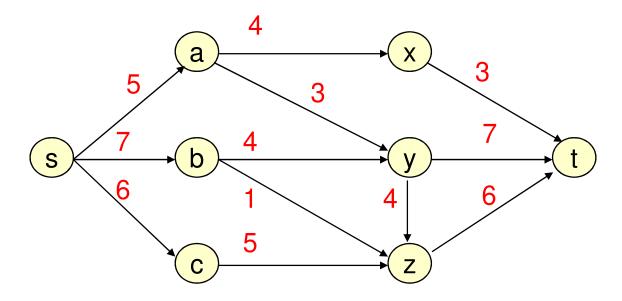
Bipartite Matching



Bipartite Matching

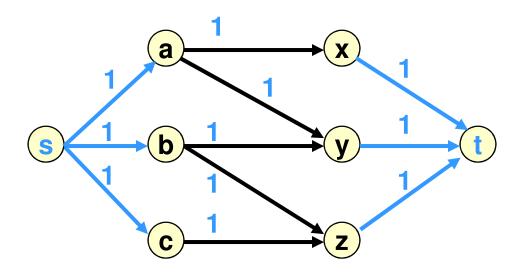


The Network Flow Problem



How much stuff can flow from s to t?

Bipartite matching as a special case of flow



Net Flow: Formal Definition

Given:

A digraph G = (V, E)

Two vertices s,t in V (source & sink)

A capacity $c(u,v) \ge 0$ for each $(u,v) \in E$ (and c(u,v) = 0 for all non-edges (u,v))

Find:

A *flow function* $f: E \rightarrow R$ s.t., for all u,v:

$$0 \le f(u,v) \le c(u,v)$$

[Capacity Constraint]

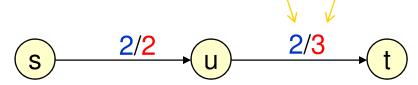
Maximizing total flow $v(\mathbf{f}) = \mathbf{f}^{out}(\mathbf{s})$

Notation:

$$f^{in}(v) = \sum_{e=(u,v)\in E} f(u,v) \qquad \qquad f^{out}(v) = \sum_{e=(v,w)\in E} f(v,w)$$

Example: A Flow Function

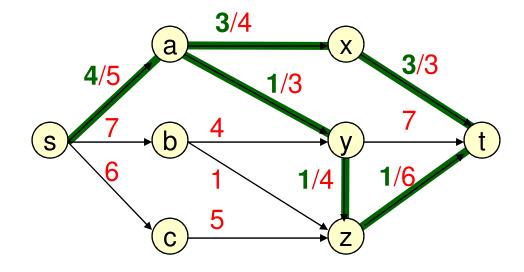
flow/capacity, not .66...



$$f^{in}(u)=f(s,u)=2=f(u,t)=f^{out}(u)$$

-

Example: A Flow Function



- Not shown: f(u,v) if = 0
- Note: max flow ≥ 4 since f is a flow function, with v(f) = 4

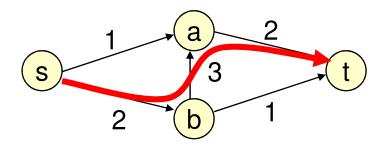
Max Flow via a Greedy Alg?

While there is an s → t path in G
Pick such a path, p
Find c, the min capacity of any edge in p
Count c towards the flow value
Subtract c from all capacities on p
Delete edges of capacity 0

Max Flow via a Greedy Alg?

While there is an s → t path in G
Pick such a path, p
Find c, the min capacity of any edge in p
Count c towards the flow value
Subtract c from all capacities on p
Delete edges of capacity 0

This does NOT always find a max flow:



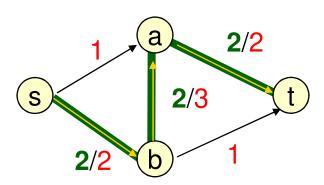
If pick $s \rightarrow b \rightarrow a \rightarrow t$ first, flow stuck at 2. But flow 3 possible.

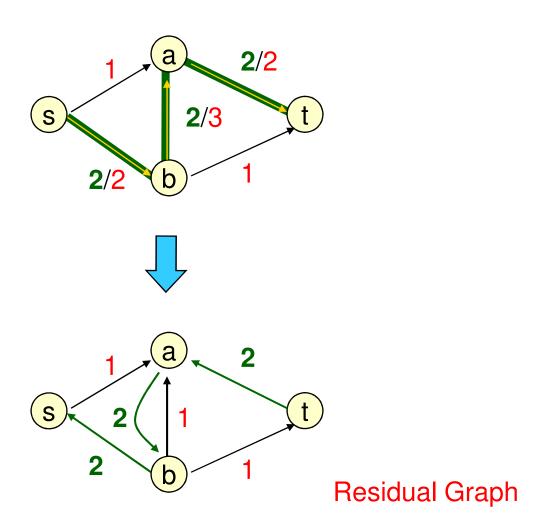
A Brief History of Flow

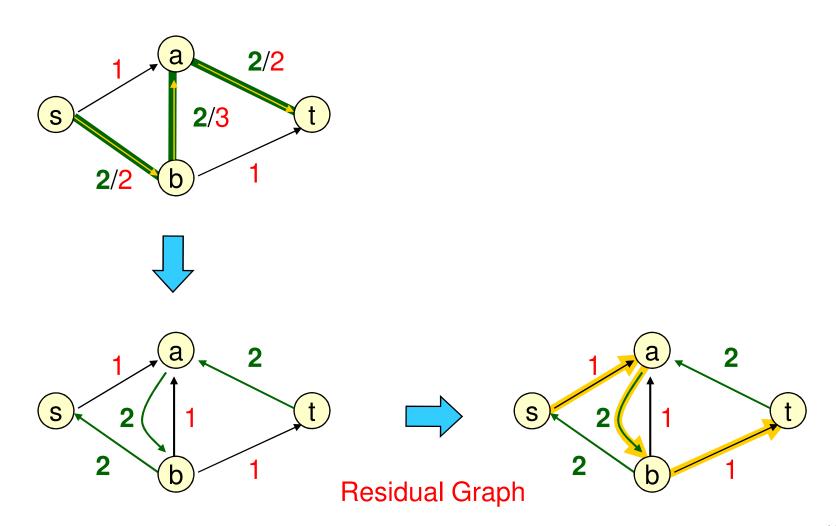
#	year	discoverer(s)	bound
1	1951	Dantzig	$O(n^2mU)$
2	1955	Ford & Fulkerson	O(nmU)
3	1970	Dinitz	$O(nm^2)$
		Edmonds & Karp	·
4	1970	Dinitz	$O(n^2m)$
5	1972	Edmonds & Karp	$O(m^2 \log U)$
		Dinitz	
6	1973	Dinitz	$O(nm \log U)$
		Gabow	
7	1974	Karzanov	$O(n^3)$
8	1977	Cherkassky	$O(n^2\sqrt{m})$
9	1980	Galil & Naamad	$O(nm\log^2 n)$
10	1983	Sleator & Tarjan	$O(nm \log n)$
11	1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
12	1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
13	1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/(m+2))$
14	1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
15	1990	Cheriyan et al.	$O(n^3/\log n)$
16	1990	Alon	$O(nm + n^{8/3}\log n)$
17	1992	King et al.	$O(nm + n^{2+\epsilon})$
18	1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
19	1994	King et al.	$ O(nm \log_{m/(n \log n)} n) $
20	1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$
			$O(n^{2/3}m\log(n^2/m)\log U)$

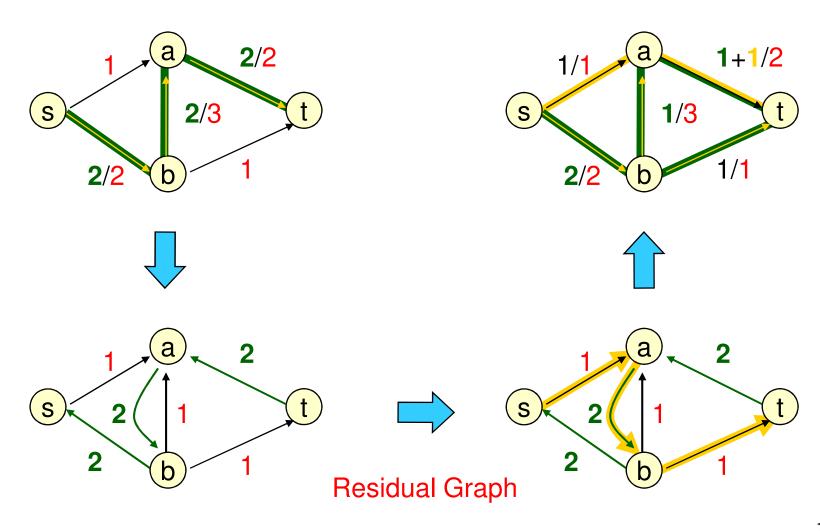
n = # of verticesm= # of edgesU = Max capacity

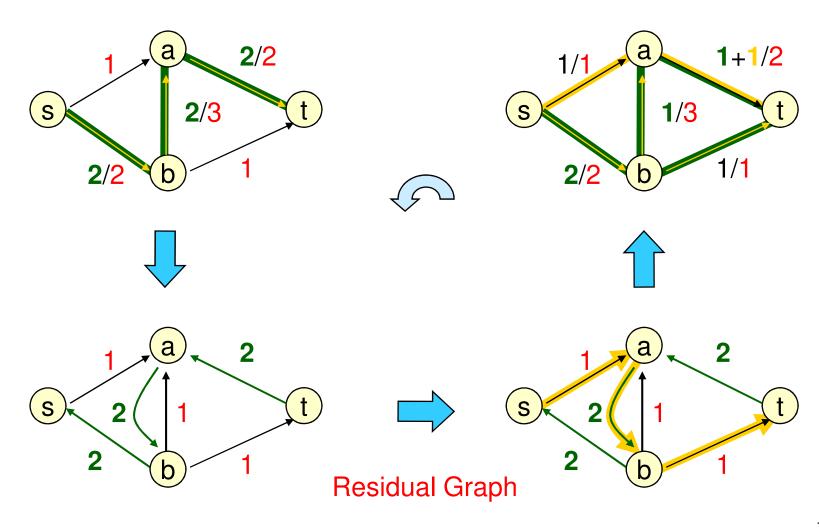
Source: Goldberg & Rao, FOCS '97



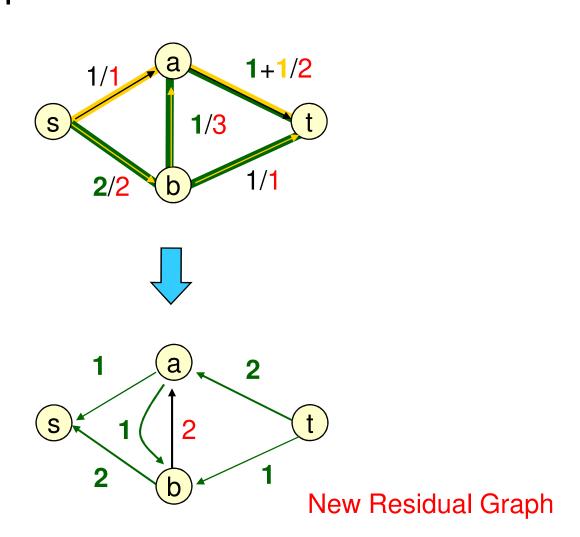








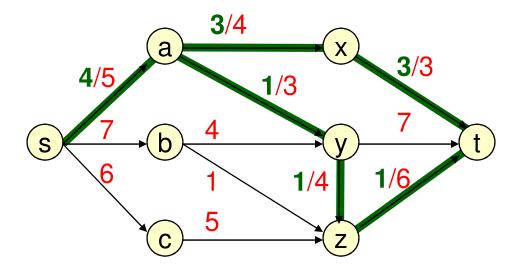
Greed Revisited: An Augmenting Path



4

Residual Capacity

The residual capacity (w.r.t. f) of (u,v) is $c_f(u,v) = c(u,v) - f(u,v)$ if $f(u,v) \le c(u,v)$ and $c_f(u,v) = f(v,u)$ if f(v,u) > 0



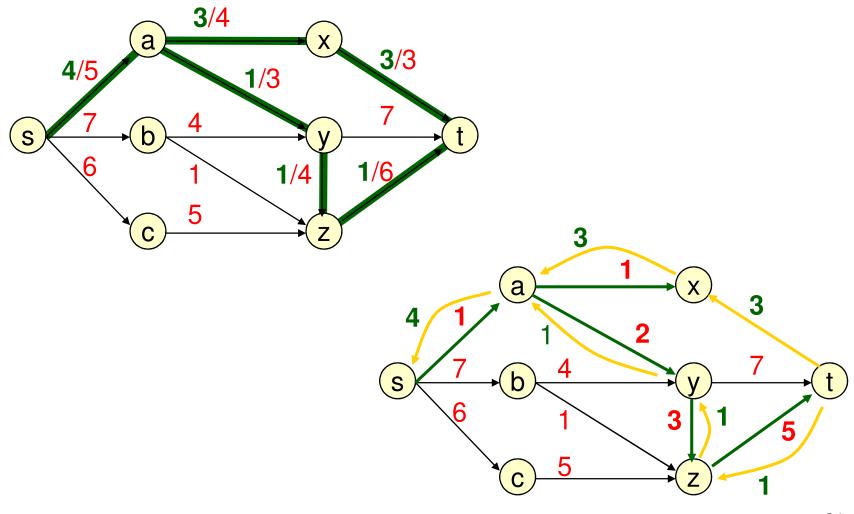
• e.g. $c_f(s,b)=7$; $c_f(a,x)=1$; $c_f(x,a)=3$

1

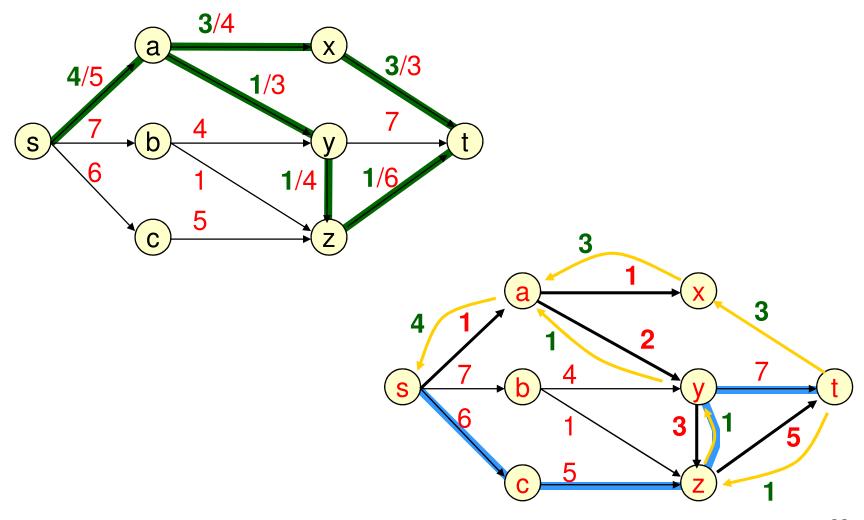
Residual Graph & Augmenting Paths

- The residual graph (w.r.t. f) is the graph G_f = (V,E_f), where E_f = { (u,v) | c_f(u,v) > 0 }
 - Two kinds of edges
 - Forward edges
 - f(u,v) < c(u,v) so $c_f(u,v) = c(u,v) f(u,v) > 0$
 - Backward edges
 - f(u,v)>0 so $c_f(v,u) = f(u,v)>0$
- An augmenting path (w.r.t. f) is a simple
 s → t path in G_f.

A Residual Network



An Augmenting Path

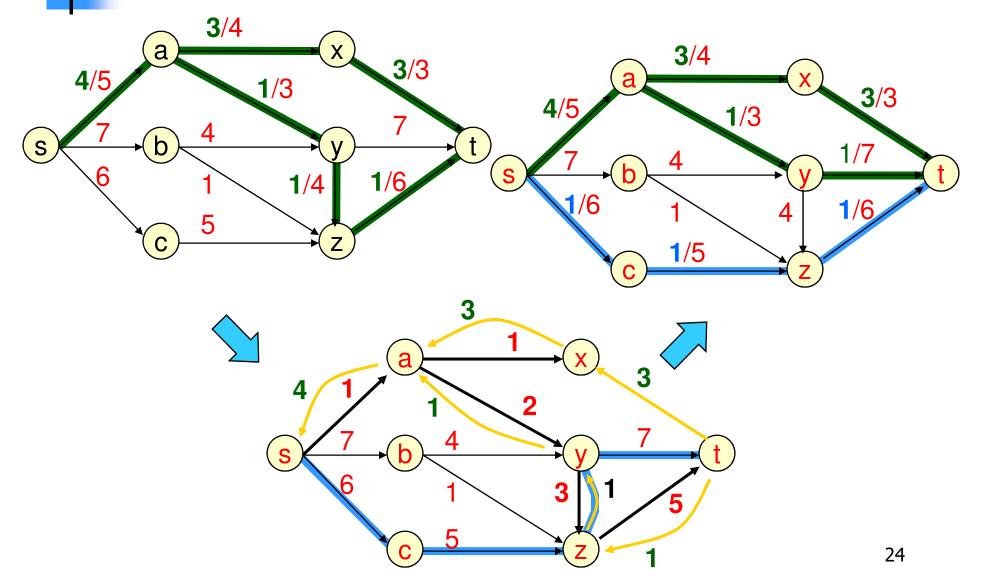


4

Augmenting A Flow

```
augment(f,P)
     \mathbf{c}_{\mathbf{P}} \leftarrow \min_{(\mathbf{u}, \mathbf{v}) \in \mathbf{P}} \mathbf{c}_{\mathbf{f}}(\mathbf{u}, \mathbf{v}) "bottleneck(P)"
     for each e∈ P
          if e is a forward edge then
                increase f(e) by c_p
          else (e is a backward edge)
               decrease f(e') by c_P where e' = reverse of e
          endif
     endfor
     return(f)
```


Augmenting A Flow



Claim: Augmented flow is legal

If G_f has an augmenting path P, then the function f'=augment(f,P) is a legal flow.

Proof:

f' and f differ only on the edges of P so only need to consider such edges (u,v)

Proof: Augmented flow is legal

If (u,v) is a forward edge then $f'(u,v)=f(u,v)+c_{p} \le f(u,v)+c_{f}(u,v)$ = f(u,v)+c(u,v)-f(u,v) = c(u,v)

- If (u,v) is a backward edge then f and f' differ on flow along (v,u) instead of (u,v) f'(v,u)=f(v,u)-c_P ≥ f(v,u)-c_f(u,v) = f(v,u)-f(v,u)=0
- Other conditions like flow conservation still met

Ford-Fulkerson Method

Start with f=0 for every edge
While G_f has an augmenting path,
augment

• Questions:

- Does it halt?
- Does it find a maximum flow?
- How fast?

Observations about Ford-Fulkerson Algorithm

- At every stage the capacities and flow values are always integers (if they start that way)
- The flow value v(f')=v(f)+c_P>v(f) for f'=augment(f,P)
 - Since edges of residual capacity 0 do not appear in the residual graph
- Let $C = \sum_{(s,u) \in E} c(s,u)$
 - v(f)≤C
 - F-F does at most C rounds of augmentation since flows are integers and increase by at least 1 per step

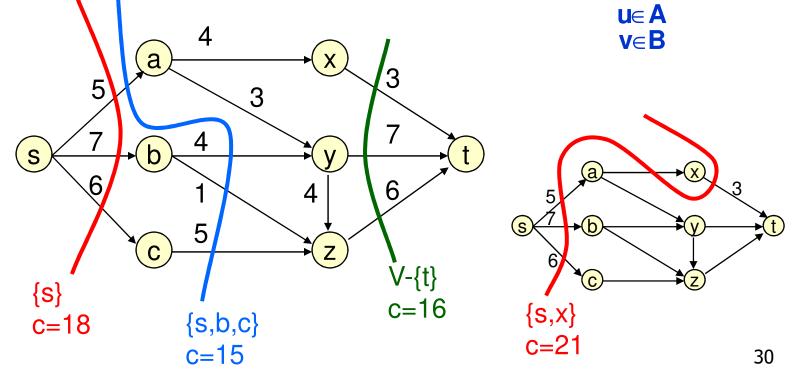
Running Time of Ford-Fulkerson

- For f=0, $G_f=G$
- Finding an augmenting path in G_f is graph search O(n+m)=O(m) time
- Augmenting and updating G_f is O(n) time
- Total O(mC) time
- Does it find a maximum flow?
 - Need to show that for every flow f that isn't maximum G_f contains an s-t-path

Cuts

- A partition (A,B) of V is an s-t-cut if
 - **S**∈ **A**, **t**∈ **B**

• Capacity of cut (A,B) is $c(A,B) = \sum c(u,v)$



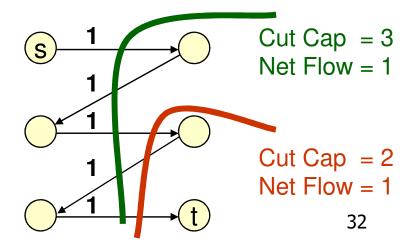
Convenient Definition

•
$$f^{out}(A) = \sum_{v \in A, w \notin A} f(v,w)$$

•
$$f^{in}(A) = \sum_{v \in A, u \notin A} f(u,v)$$

Two claims

- For any flow f and any cut (A,B),
 - 1) the net flow across the cut equals the total flow, i.e., $v(f) = f^{out}(A) f^{in}(A)$, and
 - 2) the net flow across the cut cannot exceed the capacity of the cut, i.e. fout(A)-fin(A) ≤ c(A,B)
- Corollary : Max flow ≤ Min cut



Proof of Claim 1

- Consider a set A with s∈ A, t∉ A
- $f^{out}(A) f^{in}(A) = \sum_{v \in A, w \notin A} f(v, w) \sum_{v \in A, u \notin A} f(u, v)$
- We can add flow values for edges with both endpoints in A to both sums and they would cancel out so

since all other vertices have $f^{out}(\mathbf{v}) = f^{in}(\mathbf{v})$

$$\mathbf{v}(\mathbf{f}) = \mathbf{f}^{\text{out}}(\mathbf{s}) \text{ and } \mathbf{f}^{\text{in}}(\mathbf{s}) = 0$$

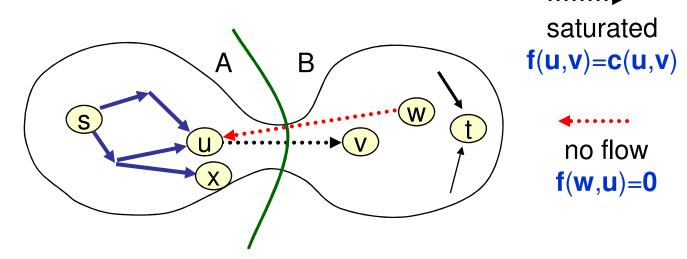
Proof of Claim 2

Max Flow / Min Cut Theorem

- Claim 3 For any flow f, if G_f has no augmenting path then there is some s-t-cut (A,B) such that v(f)=c(A,B) (proof on next slide)
- We know by Claims 1 & 2 that any flow f' satisfies v(f') ≤ c(A,B) and we know that F-F runs for finite time until it finds a flow f satisfying conditions of Claim 3
 - Therefore by Claim 3 for any flow f', $v(f') \le v(f)$
- Theorem (a) F-F computes a maximum flow in G
 (b) For any graph G, the value v(f) of a maximum flow = minimum capacity c(A,B) of any s-t-cut in G

Claim 3

Let $A = \{ u \mid \exists \text{ an path in } G_f \text{ from s to } u \}$ $B = V - A; s \in A, t \in B$



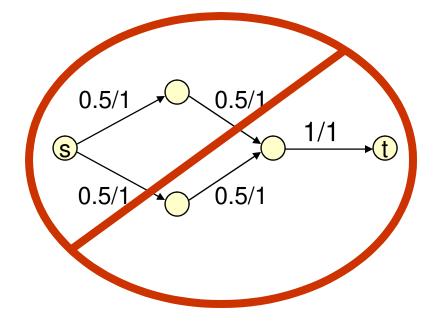
This is true for **every** edge crossing the cut, i.e.

$$\begin{split} f^{out}(A) = \sum_{\substack{u \in A \\ v \in B}} f(u,v) = & \sum_{\substack{u \in A \\ v \in B}} c(u,v) = c(A,B) \quad and \quad f^{in}(A) = 0 \text{ so} \\ \nu(f) = & f^{out}(A) - f^{in}(A) = c(A,B) \end{split}$$

Flow Integrality Theorem

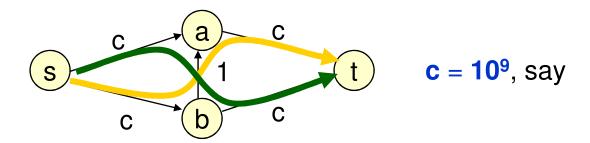
If all capacities are integers

- The max flow has an integer value
- Ford-Fulkerson method finds a max flow in which f(u,v) is an integer for all edges (u,v)



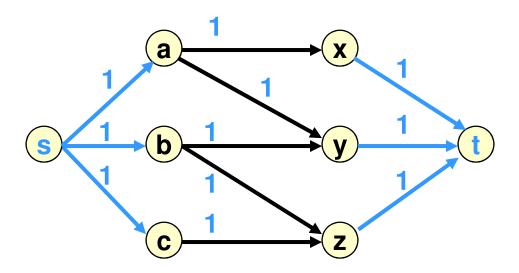
Corollaries & Facts

- If Ford-Fulkerson terminates, then it's found a max flow.
- It will terminate if c(e) integer or rational (but may not if they're irrational).
- However, may take exponential time, even with integer capacities:



-

Bipartite matching as a special case of flow



Integer flows implies each flow is just a subset of the edges

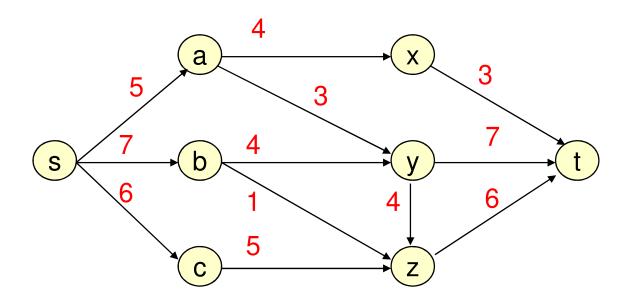
Therefore flow corresponds to a matching

O(mC)=O(nm) running time

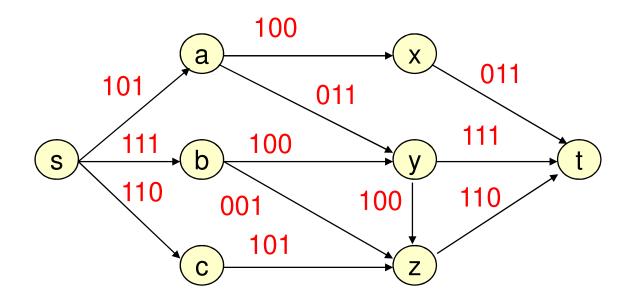
Capacity-Scaling algorithm

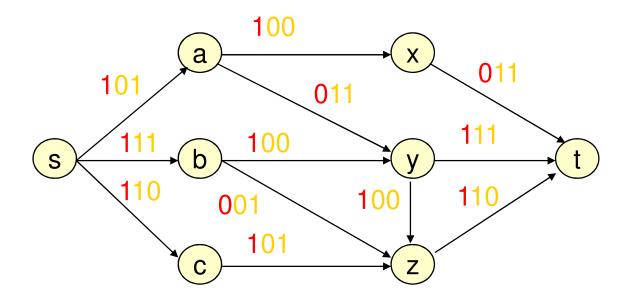
- General idea:
 - Choose augmenting paths P with 'large' capacity cp
 - Can augment flows along a path P by any amount ∆ ≤cp
 - Ford-Fulkerson still works
 - Get a flow that is maximum for the highorder bits first and then add more bits later

Capacity Scaling

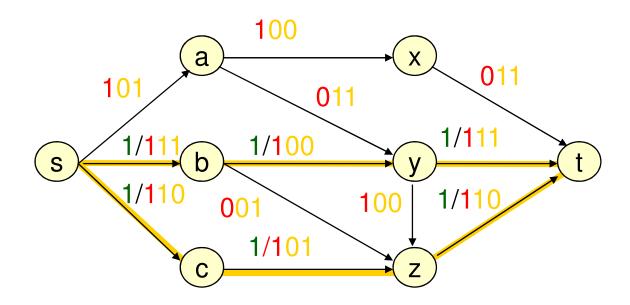


Capacity Scaling

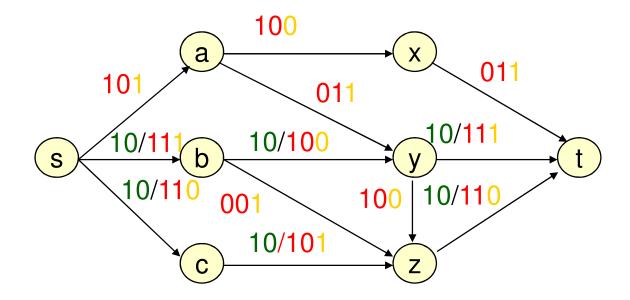




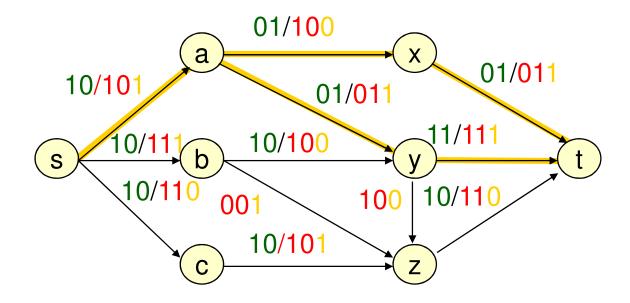
Capacity on each edge is at most 1 (either 0 or 1 times $\Delta=4$)



O(nm) time

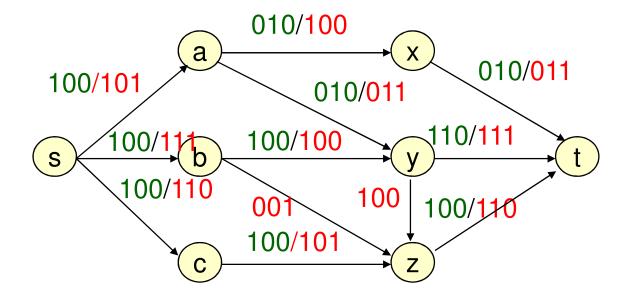


Residual capacity across min cut is at most m (either 0 or 1 times $\Delta=2$)

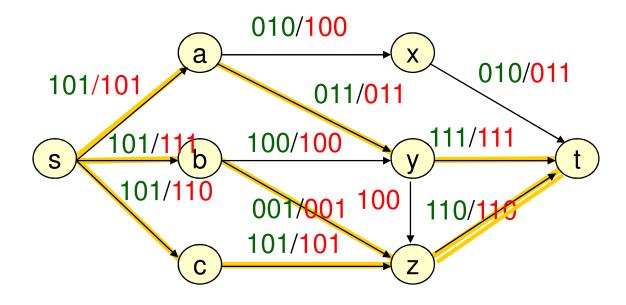


Residual capacity across min cut is at most m

 $\Rightarrow \leq m$ augmentations

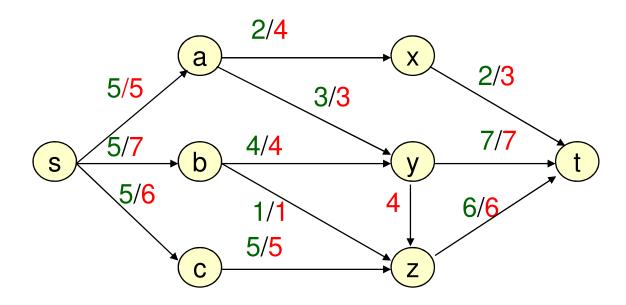


Residual capacity across min cut is at most m (either 0 or 1 times $\Delta=1$)

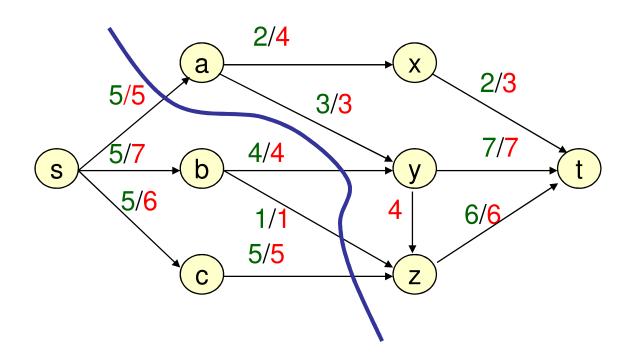


After ≤ m augmentations

Capacity Scaling Final



Capacity Scaling Min Cut



Total time for capacity scaling

- log₂ U rounds where U is largest capacity
- At most m augmentations per round
 - Let c_i be the capacities used in the ith round and f_i be the maxflow found in the ith round
 - For any edge (\mathbf{u},\mathbf{v}) , $\mathbf{c}_{i+1}(\mathbf{u},\mathbf{v}) \leq 2\mathbf{c}_i(\mathbf{u},\mathbf{v})+1$
 - i+1st round starts with flow f = 2 f_i
 - Let (A,B) be a min cut from the ith round
 - $\mathbf{v}(\mathbf{f_i}) = \mathbf{c_i}(\mathbf{A}, \mathbf{B}) \text{ so } \mathbf{v}(\mathbf{f}) = \mathbf{2c_i}(\mathbf{A}, \mathbf{B})$
 - $v(f_{i+1}) \le c_{i+1}(A,B) \le 2c_i(A,B) + m = v(f) + m$
- O(m) time per augmentation
- Total time O(m² log U)

Edmonds-Karp Algorithm

 Use a shortest augmenting path (via Breadth First Search in residual graph)

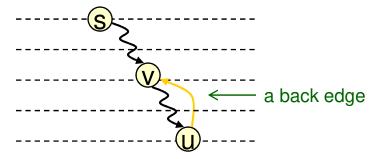
■ Time: O(n m²)

BFS/Shortest Path Lemmas

Distance from s in G_f is never reduced by:

- Deleting an edge
 Proof: no new (hence no shorter) path created
- Adding an edge (u,v), provided v is nearer than u

Proof: BFS is unchanged, since v visited before (u,v) examined

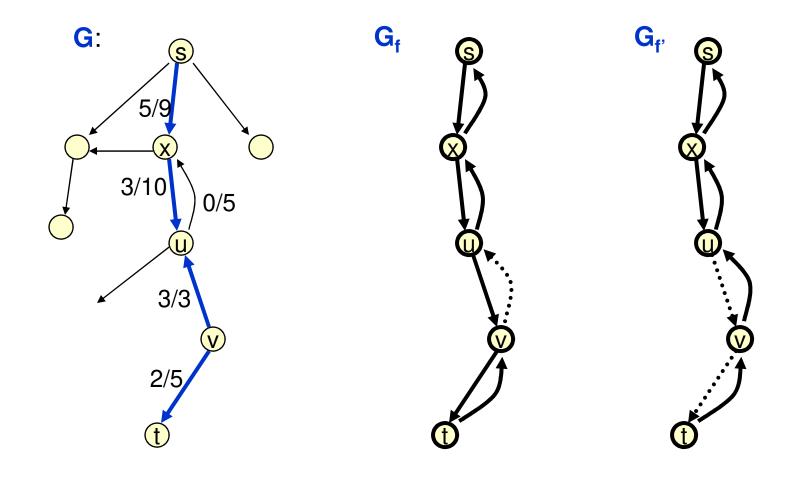


Key Lemma

Let **f** be a flow, **G**_f the residual graph, and **P** a shortest augmenting path. Then no vertex is closer to **s** after augmentation along **P**.

Proof: Augmentation along P only deletes forward edges, or adds back edges that go to previous vertices along P

Augmentation vs BFS



Theorem

The Edmonds-Karp Algorithm performs O(mn) flow augmentations

Proof:

Call (u,v) critical for augmenting path P if it's closest to s having min residual capacity

It will disappear from G_f after augmenting along P

In order for (u,v) to be critical again the (u,v) edge must re-appear in G_f but that will only happen when the distance to u has increased by 2 (next slide)

It won't be critical again until farther from so each edge critical at most n/2 times

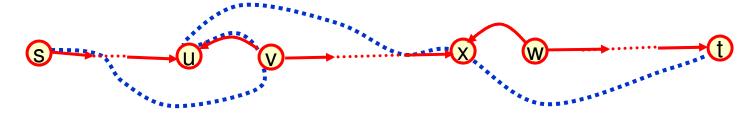
Critical Edges in G_f

Shortest s-t path P in G_f

critical edge $|\mathbf{d}_{\mathbf{f}}(\mathbf{s},\mathbf{v}) = \mathbf{d}_{\mathbf{f}}(\mathbf{s},\mathbf{u}) + \mathbf{1}$ since this is a shortest path

After augmenting along P

For (u,v) to be critical later for some flow f' it must be in G_{f'} so must have augmented along a shortest path containing (v,u)



Then we must have $d_{f'}(s,u)=d_{f'}(s,v)+1 \ge d_f(s,v)+1=d_f(s,u)+2$

Corollary

Edmonds-Karp runs in O(nm²) time

Project Selection a.k.a. The Strip Mining Problem

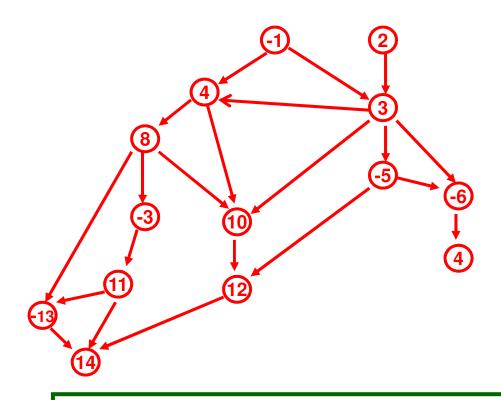
Given

- a directed acyclic graph G=(V,E)
 representing precedence constraints on
 tasks (a task points to its predecessors)
- a profit value p(v) associated with each task v∈ V (may be positive or negative)

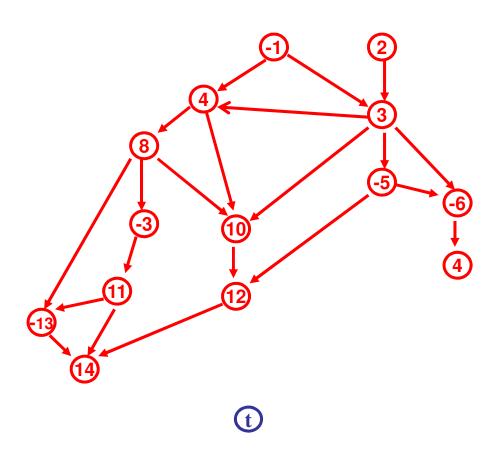
Find

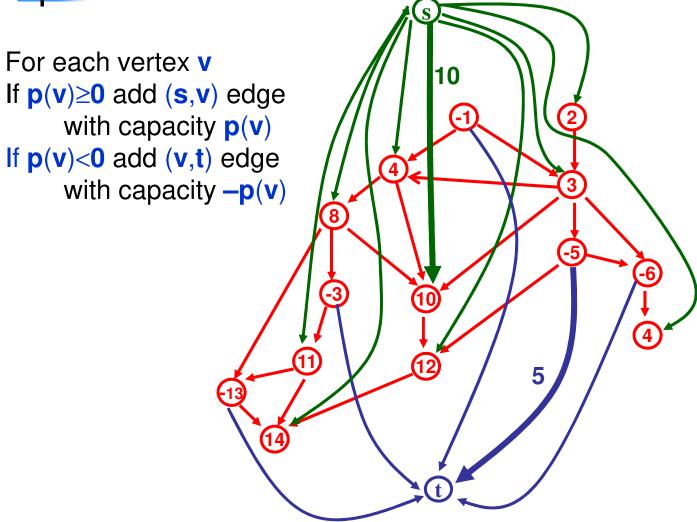
a set A⊆V of tasks that is closed under predecessors, i.e. if (u,v)∈ E and u∈ A then
 v∈ A, that maximizes Profit(A)=∑_{v∈A} p(v)

Project Selection Graph

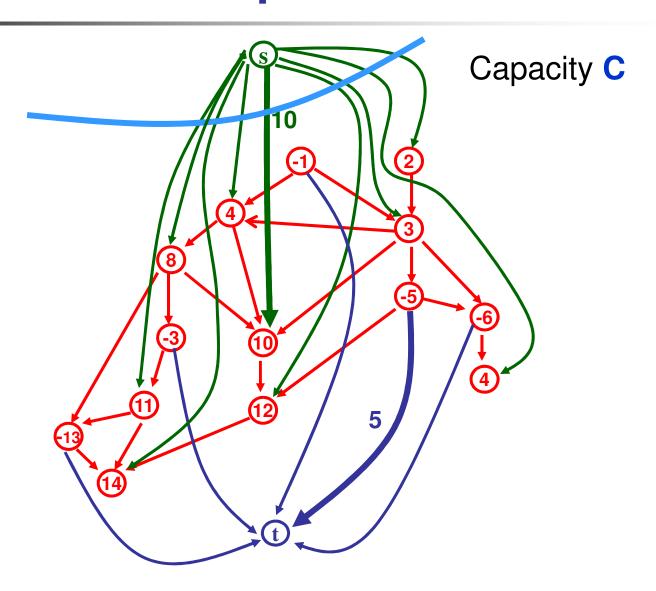


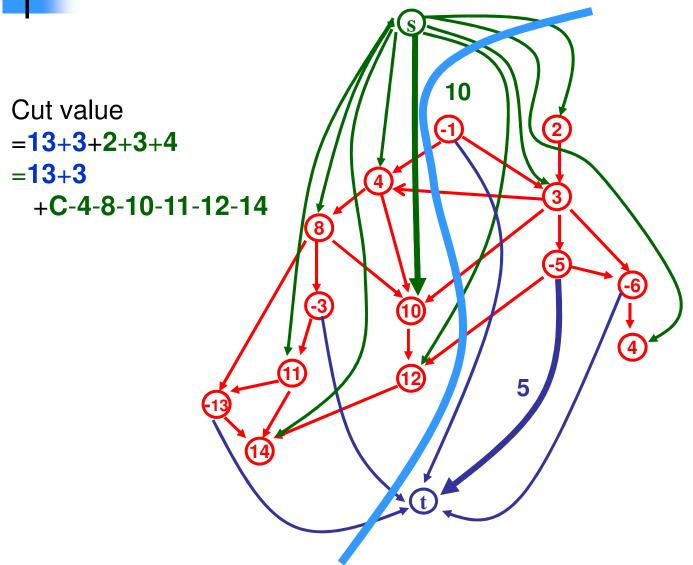
Each task points to its predecessor tasks





- Want to arrange capacities on edges of G so that for minimum s-t-cut (S,T) in G', the set A=S-{s}
 - satisfies precedence constraints
 - has maximum possible profit in G
- Cut capacity with $S=\{s\}$ is just $C=\sum_{v: p(v)\geq 0} p(v)$
 - Profit(A) ≤ C for any set A
- To satisfy precedence constraints don't want any original edges of G going forward across the minimum cut
 - That would correspond to a task in A=S-{s} that had a predecessor not in A=S-{s}
- Set capacity of each of the edges of G to C+1
 - The minimum cut has size at most C





Project Selection

Claim Any s-t-cut (S,T) in G' such that
 A=S-{s} satisfies precedence constraints has capacity

$$c(S,T)=C - \sum_{v \in A} p(v) = C - Profit(A)$$

- Corollary A minimum cut (S,T) in G' yields an optimal solution A=S-{s} to the profit selection problem
- Algorithm Compute maximum flow f in G', find the set S of nodes reachable from s in G'_f and return S-{s}

Proof of Claim

- A=S-{s} satisfies precedence constraints
 - No edge of G crosses forward out of A since those edges have capacity C+1
 - Only forward edges cut are of the form (v,t) for v∈ A or (s,v) for v∉ A
 - The (v,t) edges for v∈ A contribute

$$\sum_{\mathbf{v}\in A: p(\mathbf{v})<0} -\mathbf{p}(\mathbf{v}) = -\sum_{\mathbf{v}\in A: p(\mathbf{v})<0} \mathbf{p}(\mathbf{v})$$

The (s,v) edges for v∉ A contribute

$$\sum_{v\notin A:\ p(v)\geq 0} p(v) = C - \sum_{v\in A:\ p(v)\geq 0} p(v)$$

Therefore the total capacity of the cut is

$$c(S,T) = C - \sum_{v \in A} p(v) = C - Profit(A)$$