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CSE 421:  Introduction to 

Algorithms

Graph Traversal

Paul Beame
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Undirected Graph   G = (V,E)
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Directed Graph G = (V,E)
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Graph Traversal

 Learn the basic structure of a graph

 Walk from a fixed starting vertex s to 
find all vertices reachable from s
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Generic Graph Traversal Algorithm

Find: set R of vertices reachable from s∈V

Reachable(s): 

R← {s}

While there is a (u,v)∈E where u∈R and v∉R

Add v to R

Return R
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Generic Traversal Always Works

 Claim: At termination R is the set of nodes 
reachable from s

 Proof
 ⊆: For every node v∈R there is a path from s to v

 ⊇: Suppose there is a node w∉R reachable from s
via a path P

 Take first node v on P such that v∉R

 Predecessor u of v in P satisfies
 u ∈ R

 (u,v)∈E

 But this contradicts the fact that the algorithm 
exited the while loop. 
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Graph Traversal

 Learn the basic structure of a graph

 Walk from a fixed starting vertex s to 
find all vertices reachable from s

 Three states of vertices
 unvisited

 visited/discovered  (in R)

 fully-explored (in R and all neighbors in R)
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Breadth-First Search

 Completely explore the vertices in order 
of their distance from s

 Naturally implemented using a queue
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BFS(s)

Global initialization: mark all vertices “unvisited”
BFS(s) 

mark  s “visited”; R←{s}; layer L0←{s}

while Li not empty

Li+1 ← ∅

For each u∈Li

for each edge {u,v}

if (v is “unvisited”) 

mark v “visited”

Add v to set R and to layer Li+1

mark u “fully-explored”

i ← i+1
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Properties of BFS(v)

 BFS(s) visits x if and only if there is a path in G from 

s to x.

 Edges followed to undiscovered vertices define a 

“breadth first spanning tree" of G

 Layer i in this tree, Li

 those vertices u such that the shortest path in G
from the root s is of length i.

 On undirected graphs

 All non-tree edges join vertices on the same or 
adjacent layers
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Properties of BFS

 On undirected graphs

 All non-tree edges join vertices on the 
same or adjacent layers

 Suppose not
 Then there would be vertices (x,y) such that 

x∈Li and y∈Lj and j>i+1

 Then, when vertices incident to x are 

considered in BFS y would be added to Li+1

and not to Lj
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BFS Application: Shortest Paths
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4
can label by distances from start

Tree gives shortest 

paths from start vertex
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Graph Search Application: 
Connected Components

 Want to answer questions of the 
form:

 Given: vertices u and v in G

 Is there a path from u to v?
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Graph Search Application: 
Connected Components

 Want to answer questions of the 
form:

 Given: vertices u and v in G

 Is there a path from u to v?

 Idea: create array A such that                  
A[u] = smallest numbered vertex 

that is connected to u

 question reduces to whether A[u]=A[v]?
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Graph Search Application: 
Connected Components

 Want to answer questions of the 
form:

 Given: vertices u and v in G

 Is there a path from u to v?

 Idea: create array A such that                  
A[u] = smallest numbered vertex 

that is connected to u

 question reduces to whether A[u]=A[v]?

Q: Why 

not create 
an array 
Path[u,v]?
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Graph Search Application: 
Connected Components

 initial state: all v unvisited
for s←1 to n do                                          

if state(s) ≠ “fully-explored” then                                 
BFS(s): setting A[u] ←s for each u found 

(and marking u visited/fully-explored)         
endif                                                                               

endfor

 Total cost: O(n+m)
 each vertex is touched once in this outer 

procedure and the edges examined in the different 
BFS runs are disjoint 

 works also with Depth First Search
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DFS(u) – Recursive version

Global Initialization: mark all vertices "unvisited"

DFS(u)

mark  u “visited” and add u to R

for each edge {u,v}

if (v is “unvisited”) 

DFS(v)

end for

mark u “fully-explored”
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Properties of DFS(s)

 Like BFS(s):
 DFS(s) visits x if and only if there is a path in G

from s to x

 Edges into undiscovered vertices define a "depth 
first spanning tree" of G

 Unlike the BFS tree: 
 the DFS spanning tree isn't minimum depth

 its levels don't reflect min distance from the root

 non-tree edges never join vertices on the same or 
adjacent levels

 BUT…
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Non-tree edges

 All non-tree edges join a vertex and one 
of its descendents/ancestors in the DFS 
tree

 No cross edges.
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No cross edges in DFS on undirected 
graphs

 Claim: During DFS(x) every vertex marked visited is 
a descendant of x in the DFS tree T

 Claim: For every x,y in the DFS tree T,  if (x,y) is an 
edge not in T then one of x or y is an ancestor of the 
other in T

 Proof:
 One of x or y is visited first, suppose WLOG that x is visited 

first and therefore DFS(x) was called before DFS(y)

 During DFS(x), the edge (x,y) is examined

 Since (x,y) is a not an edge of T, y was visited when the 
edge (x,y) was examined during DFS(x)

 Therefore y was visited during the call to DFS(x) so y is a 
descendant of x.
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Applications of Graph Traversal:
Bipartiteness Testing

 Easy: A graph G is not bipartite if it contains 
an odd length cycle

 WLOG: G is connected
 Otherwise run on each component

 Simple idea: start coloring nodes starting at a 
given node s
 Color s red

 Color all neighbors of s blue

 Color all their neighbors red

 If you ever hit a node that was already colored

 the same color as you want to color it, ignore it

 the opposite color, output error
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BFS gives Bipartiteness

 Run BFS assigning all vertices from layer Li

the color i mod 2

 i.e. red if they are in an even layer, blue if 

in an odd layer 

 If there is an edge joining two vertices from 

the same layer then output “Not Bipartite”
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Why does it work?

s

Li

LjLj

u v

u and v have a common ancestor

Cycle length 2(j-i)+1
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DFS(v) for a directed graph
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DFS(v)
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back edges

forward 
edges

← cross edges    

NO → cross edges
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Properties of Directed DFS

 Before DFS(s) returns, it visits all 
previously unvisited vertices reachable 
via directed paths from s

 Every cycle contains a back edge in the 
DFS tree
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Directed Acyclic Graphs

 A directed graph G=(V,E) is acyclic if it 
has no directed cycles

 Terminology: A directed acyclic graph is 
also called a DAG
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Topological Sort

 Given: a directed acyclic graph (DAG) G=(V,E)

 Output: numbering of the vertices of G with 
distinct numbers from 1 to n so edges only go 
from lower number to higher numbered vertices

 Applications
 nodes represent tasks

 edges represent precedence between tasks

 topological sort gives a sequential schedule 
for solving them 
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Directed Acyclic Graph
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In-degree 0 vertices

 Every DAG has a vertex of in-degree 0

 Proof: By contradiction
 Suppose every vertex has some incoming edge

 Consider following procedure:

while (true) do

v←some predecessor of v

 After n+1 steps where n=|V| there will be a 
repeated vertex

 This yields a cycle, contradicting that it is a 
DAG
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Topological Sort

 Can do using DFS

 Alternative simpler idea:

 Any vertex of in-degree 0 can  be given 

number 1 to start

 Remove it from the graph and then give a 

vertex of in-degree 0 number 2, etc. 
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Topological Sort

1
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Topological Sort

1 2
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Implementing Topological Sort

 Go through all edges, computing array with in-degree 

for each vertex     O(m+n)

 Maintain a queue (or stack) of vertices of  in-degree 0

 Remove any vertex in queue and number it

 When a vertex is removed, decrease in-degree of 

each of its neighbors by 1 and add them to the queue 

if their degree drops to 0

Total cost O(m+n)


