
1

CSE 421: Introduction to

Algorithms

Graph Traversal

Paul Beame

2

Undirected Graph G = (V,E)

1

2
10

9

8

3

4

5

6

7

11

12

13

3

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5

6

7

11

12

13

4

Graph Traversal

 Learn the basic structure of a graph

 Walk from a fixed starting vertex s to
find all vertices reachable from s

5

Generic Graph Traversal Algorithm

Find: set R of vertices reachable from s∈V

Reachable(s):

R← {s}

While there is a (u,v)∈E where u∈R and v∉R

Add v to R

Return R

6

Generic Traversal Always Works

 Claim: At termination R is the set of nodes
reachable from s

 Proof
 ⊆: For every node v∈R there is a path from s to v

 ⊇: Suppose there is a node w∉R reachable from s
via a path P

 Take first node v on P such that v∉R

 Predecessor u of v in P satisfies
 u ∈ R

 (u,v)∈E

 But this contradicts the fact that the algorithm
exited the while loop.

7

Graph Traversal

 Learn the basic structure of a graph

 Walk from a fixed starting vertex s to
find all vertices reachable from s

 Three states of vertices
 unvisited

 visited/discovered (in R)

 fully-explored (in R and all neighbors in R)

8

Breadth-First Search

 Completely explore the vertices in order
of their distance from s

 Naturally implemented using a queue

9

BFS(s)

Global initialization: mark all vertices “unvisited”
BFS(s)

mark s “visited”; R←{s}; layer L0←{s}

while Li not empty

Li+1 ← ∅

For each u∈Li

for each edge {u,v}

if (v is “unvisited”)

mark v “visited”

Add v to set R and to layer Li+1

mark u “fully-explored”

i ← i+1

10

Properties of BFS(v)

 BFS(s) visits x if and only if there is a path in G from

s to x.

 Edges followed to undiscovered vertices define a

“breadth first spanning tree" of G

 Layer i in this tree, Li

 those vertices u such that the shortest path in G
from the root s is of length i.

 On undirected graphs

 All non-tree edges join vertices on the same or
adjacent layers

11

Properties of BFS

 On undirected graphs

 All non-tree edges join vertices on the
same or adjacent layers

 Suppose not
 Then there would be vertices (x,y) such that

x∈Li and y∈Lj and j>i+1

 Then, when vertices incident to x are

considered in BFS y would be added to Li+1

and not to Lj

12

BFS Application: Shortest Paths

0

1

2

3

4
can label by distances from start

Tree gives shortest

paths from start vertex

13

Graph Search Application:
Connected Components

 Want to answer questions of the
form:

 Given: vertices u and v in G

 Is there a path from u to v?

14

Graph Search Application:
Connected Components

 Want to answer questions of the
form:

 Given: vertices u and v in G

 Is there a path from u to v?

 Idea: create array A such that
A[u] = smallest numbered vertex

that is connected to u

 question reduces to whether A[u]=A[v]?

15

Graph Search Application:
Connected Components

 Want to answer questions of the
form:

 Given: vertices u and v in G

 Is there a path from u to v?

 Idea: create array A such that
A[u] = smallest numbered vertex

that is connected to u

 question reduces to whether A[u]=A[v]?

Q: Why

not create
an array
Path[u,v]?

16

Graph Search Application:
Connected Components

 initial state: all v unvisited
for s←1 to n do

if state(s) ≠ “fully-explored” then
BFS(s): setting A[u] ←s for each u found

(and marking u visited/fully-explored)
endif

endfor

 Total cost: O(n+m)
 each vertex is touched once in this outer

procedure and the edges examined in the different
BFS runs are disjoint

 works also with Depth First Search

17

DFS(u) – Recursive version

Global Initialization: mark all vertices "unvisited"

DFS(u)

mark u “visited” and add u to R

for each edge {u,v}

if (v is “unvisited”)

DFS(v)

end for

mark u “fully-explored”

18

Properties of DFS(s)

 Like BFS(s):
 DFS(s) visits x if and only if there is a path in G

from s to x

 Edges into undiscovered vertices define a "depth
first spanning tree" of G

 Unlike the BFS tree:
 the DFS spanning tree isn't minimum depth

 its levels don't reflect min distance from the root

 non-tree edges never join vertices on the same or
adjacent levels

 BUT…

19

Non-tree edges

 All non-tree edges join a vertex and one
of its descendents/ancestors in the DFS
tree

 No cross edges.

20

No cross edges in DFS on undirected
graphs

 Claim: During DFS(x) every vertex marked visited is
a descendant of x in the DFS tree T

 Claim: For every x,y in the DFS tree T, if (x,y) is an
edge not in T then one of x or y is an ancestor of the
other in T

 Proof:
 One of x or y is visited first, suppose WLOG that x is visited

first and therefore DFS(x) was called before DFS(y)

 During DFS(x), the edge (x,y) is examined

 Since (x,y) is a not an edge of T, y was visited when the
edge (x,y) was examined during DFS(x)

 Therefore y was visited during the call to DFS(x) so y is a
descendant of x.

21

Applications of Graph Traversal:
Bipartiteness Testing

 Easy: A graph G is not bipartite if it contains
an odd length cycle

 WLOG: G is connected
 Otherwise run on each component

 Simple idea: start coloring nodes starting at a
given node s
 Color s red

 Color all neighbors of s blue

 Color all their neighbors red

 If you ever hit a node that was already colored

 the same color as you want to color it, ignore it

 the opposite color, output error

22

BFS gives Bipartiteness

 Run BFS assigning all vertices from layer Li

the color i mod 2

 i.e. red if they are in an even layer, blue if

in an odd layer

 If there is an edge joining two vertices from

the same layer then output “Not Bipartite”

23

Why does it work?

s

Li

LjLj

u v

u and v have a common ancestor

Cycle length 2(j-i)+1

24

DFS(v) for a directed graph

1

2
10

9

8

3

4

5

6

7

11

12

13

25

DFS(v)

1

2
10

9

8

3

4

5

6

7

11

12

13

tree edges

back edges

forward
edges

← cross edges

NO → cross edges

26

Properties of Directed DFS

 Before DFS(s) returns, it visits all
previously unvisited vertices reachable
via directed paths from s

 Every cycle contains a back edge in the
DFS tree

27

Directed Acyclic Graphs

 A directed graph G=(V,E) is acyclic if it
has no directed cycles

 Terminology: A directed acyclic graph is
also called a DAG

28

Topological Sort

 Given: a directed acyclic graph (DAG) G=(V,E)

 Output: numbering of the vertices of G with
distinct numbers from 1 to n so edges only go
from lower number to higher numbered vertices

 Applications
 nodes represent tasks

 edges represent precedence between tasks

 topological sort gives a sequential schedule
for solving them

29

Directed Acyclic Graph

30

In-degree 0 vertices

 Every DAG has a vertex of in-degree 0

 Proof: By contradiction
 Suppose every vertex has some incoming edge

 Consider following procedure:

while (true) do

v←some predecessor of v

 After n+1 steps where n=|V| there will be a
repeated vertex

 This yields a cycle, contradicting that it is a
DAG

31

Topological Sort

 Can do using DFS

 Alternative simpler idea:

 Any vertex of in-degree 0 can be given

number 1 to start

 Remove it from the graph and then give a

vertex of in-degree 0 number 2, etc.

32

Topological Sort

1

33

Topological Sort

1 2

34

Topological Sort

1

3

2

35

Topological Sort

1

4
3

2

36

Topological Sort

1

4
3

5

2

37

Topological Sort

1

4
3

5

6

2

38

Topological Sort

1

4
3

5

6

7

2

39

Topological Sort

1

4
3

8

5

6

7

2

40

Topological Sort

1

4
3

8

9

5

6

7

2

41

Topological Sort

1

4
3

10

8

9

5

6

7

2

42

Topological Sort

1

4
3

10

8

9

11

5

6

7

2

43

Topological Sort

1

4
3

12

10

8

9

11

5

6

7

2

44

Topological Sort

1

4
3

12

10

8

9

11

13

5

6

7

2

45

Topological Sort

1

4
3

12

10

8

9

11

13

14

5

6

7

2

46

Implementing Topological Sort

 Go through all edges, computing array with in-degree

for each vertex O(m+n)

 Maintain a queue (or stack) of vertices of in-degree 0

 Remove any vertex in queue and number it

 When a vertex is removed, decrease in-degree of

each of its neighbors by 1 and add them to the queue

if their degree drops to 0

Total cost O(m+n)

