CSE 421: Introduction to Algorithms

NP-completeness

Paul Beame

Computational Complexity

- Classify problems according to the amount of computational resources used by the best algorithms that solve them
- Recall:
- worst-case running time of an algorithm
- max \# steps algorithm takes on any input of size n

Relative Complexity of Problems

- Want to compare the complexity of problems
- Want to be able to say
"Problem B is solvable in polynomial time
\Rightarrow problem A is solvable in polynomial time"
"Problem B is at least as hard as problem \mathbf{A} "

Polynomial Time Reduction

- Definition: $A \leq_{P} B$ iff there is an algorithm for A using a 'black box' (subroutine/method) that solves B that
- Uses only a polynomial number of steps
- Makes only a polynomial number of calls to a method for B

Polynomial Time Reduction

- Definition: $\mathbf{A} \leq_{P} \mathbf{B}$ iff there is an algorithm for \mathbf{A} using a 'black box' (subroutine/method) that solves B that
- Uses only a polynomial number of steps
- Makes only a polynomial number of calls to a method for B
- If $A \leq_{p} B$ then:
poly time algorithm for $\mathbf{B} \Rightarrow$ poly time algorithm for \mathbf{A}
- Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!

Polynomial Time Reduction

- Definition: $A \leq_{P} B$ iff there is an algorithm for A using a 'black box' (subroutine/method) that solves B that
- Uses only a polynomial number of steps
- Makes only a polynomial number of calls to a method for B
- If $A \leq_{p} B$ then:
poly time algorithm for $\mathbf{B} \Rightarrow$ poly time algorithm for \mathbf{A}
- Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!
if you can prove there is no fast algorithm for \mathbf{A}, then that proves there is no fast algorithm for B

Why the name reduction?

- Weird: it maps an easier problem into a harder one
- Maxwell reduced the problem of analyzing electricity \& magnetism to solving partial differential equations
- solving partial differential equations in general is a much harder problem than solving E\&M problems
- but we know that we won't need anything else

A nerd joke

- An engineer
- is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.

A nerd joke

- An engineer
- is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.
- she is next confronted with a kettle full of water sitting on the counter and told to boil water; she puts it on the stove, turns on the gas and boils water.

A nerd joke

- An engineer
- is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.
- she is next confronted with a kettle full of water sitting on the counter and told to boil water; she puts it on the stove, turns on the gas and boils water.
- A mathematician
- is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.

A nerd joke

- An engineer
- is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.
- she is next confronted with a kettle full of water sitting on the counter and told to boil water; she puts it on the stove, turns on the gas and boils water.
- A mathematician
- is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.
- she is next confronted with a kettle full of water sitting on the counter and told to boil water: she empties the kettle in the sink, places the empty kettle on the table and says, "I've reduced this to an already solved problem".

A Special kind of Polynomial-Time Reduction

We will always use a restricted form of $\mathbf{A} \leq_{p} B$ often called a Karp or many-one reduction

Definition: $\mathbf{A} \leq_{\mathrm{P}}^{1} \mathrm{~B}$ iff there is an algorithm for A given a black box solving B that on input \mathbf{x}

- Runs for polynomial time computing $\mathbf{y}=\mathrm{f}(\mathbf{x})$
- Makes $\mathbf{1}$ call to the black box for B on input y
- Returns the answer that the black box gave We say that the function f is the reduction

Reductions by Simple Equivalence

- Independent-Set:
- Given a graph $\mathbf{G}=(\mathbf{V}, E)$ and an integer \mathbf{k},
- is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that no two vertices in \mathbf{U} are joined by an edge?
- Clique:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}
- is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that every pair of vertices in \mathbf{U} is joined by an edge?
- Show: Independent-Set \leq_{p} Clique

Independent-Set \leq_{p} Clique

- Given:
- (G,k) as input to Independent-Set where $\mathbf{G}=(\mathbf{V}, \mathrm{E})$
- Transform (\mathbf{G}, \mathbf{k}) to ($\mathbf{G}^{\prime}, \mathbf{k}$) where
- $\mathbf{G}^{\prime}=\left(\mathbf{V}, \mathrm{E}^{\prime}\right)$ has the same vertices as G but E' consists of precisely those edges on V that are not edges of \mathbf{G}
- \mathbf{U} is an independent set in \mathbf{G}
$\Leftrightarrow \mathbf{U}$ is a clique in \mathbf{G}^{\prime}

Clique \leq_{p} Independent-Set

- Given:
- (\mathbf{G}, \mathbf{k}) as input to Clique where $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Transform (\mathbf{G}, \mathbf{k}) to ($\mathbf{G}^{\prime}, \mathbf{k}$) where
- $\mathbf{G}^{\prime}=\left(\mathbf{V}, \mathrm{E}^{\prime}\right)$ has the same vertices as G but E^{\prime} consists of precisely those edges on V that are not edges of \mathbf{G}
- \mathbf{U} is an clique in \mathbf{G}
$\Leftrightarrow \mathbf{U}$ is a independent set in \mathbf{G}^{\prime}

More Reductions

- Show: Independent Set \leq_{p} Vertex-Cover
- Vertex-Cover:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k},
- is there a subset \mathbf{W} of \mathbf{V} with $|\mathbf{W}| \leq \mathbf{k}$ such that every edge of \mathbf{G} has at least one endpoint in W? (i.e. W covers all edges of G)?
- Independent-Set:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k},
- is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that no two vertices in \mathbf{U} are joined by an edge?

Reduction Idea

- Claim: In a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, for $\mathbf{S} \subseteq \mathbf{V}$ \mathbf{S} is an independent set $\Leftrightarrow \mathbf{V}$-S is a vertex cover
- Proof:
- \Rightarrow Let \mathbf{S} be an independent set in \mathbf{G}
- Then for every edge $\mathbf{e} \in E$, S contains at most one endpoint of \mathbf{e}
- At least one endpoint of e must be in V-S
- V-S is a vertex cover

Reduction Idea

- Claim: In a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, for $\mathbf{S} \subseteq \mathbf{V}$
\mathbf{S} is an independent set $\Leftrightarrow \mathbf{V}$-S is a vertex cover
- Proof:
- \Rightarrow Let \mathbf{S} be an independent set in \mathbf{G}
- Then for every edge $\mathbf{e} \in E$, S contains at most one endpoint of \mathbf{e}
- At least one endpoint of e must be in V-S
- V-S is a vertex cover
- \Leftarrow Let $\mathbf{W}=\mathrm{V}$-S be a vertex cover of \mathbf{G}
- Then S does not contain both endpoints of any edge (else W would miss that edge)
- S is an independent set

Reduction

- Map (G,k) to (G,n-k)
- Previous lemma proves correctness
- Clearly polynomial time
- Just as for Clique, we also can show
- Vertex-Cover \leq_{p} Independent Set
- Map (\mathbf{G}, \mathbf{k}) to ($\mathbf{G}, \mathbf{n - k}$)

Reductions from a Special Case to a General Case

- Show: Vertex-Cover \leq_{p} Set-Cover
- Vertex-Cover:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k},
- is there a subset \mathbf{W} of \mathbf{V} with $|\mathbf{W}| \leq \mathbf{k}$ such that every edge of \mathbf{G} has at least one endpoint in W? (i.e. W covers all edges of G)?
- Set-Cover:
- Given a set \mathbf{U} of \boldsymbol{n} elements, a collection $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{m}}$ of subsets of \mathbf{U}, and an integer \mathbf{k}
- does there exist a collection of at most k sets whose union is equal to U ?

The Simple Reduction

- Transformation f maps $(\mathbf{G}=(\mathbf{V}, \mathbf{E}), \mathbf{k})$ to $\left(\mathbf{U}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{\mathbf{m}}, \mathbf{k}^{\boldsymbol{\prime}}\right)$
- U $\leftarrow E$
- For each vertex $\mathbf{v} \in \mathbf{V}$ create a set $\mathbf{S}_{\mathbf{v}}$ containing all edges that touch \mathbf{v}
$-\mathbf{k}^{\prime} \leftarrow \mathrm{k}$
- Reduction f is clearly polynomial-time to compute
- We need to prove that the resulting algorithm gives the right answer!

Proof of Correctness

- Two directions:
- If the answer to Vertex-Cover on (\mathbf{G}, \mathbf{k}) is YES then the answer for Set-Cover on $f(\mathbf{G}, \mathbf{k})$ is YES
- If a set \mathbf{W} of \mathbf{k} vertices covers all edges then the collection $\left\{\mathbf{S}_{\mathbf{v}} \mid \mathbf{v} \in \mathbf{W}\right\}$ of k sets covers all of U

Proof of Correctness

- Two directions:
- If the answer to Vertex-Cover on (\mathbf{G}, \mathbf{k}) is YES then the answer for Set-Cover on $f(\mathbf{G}, \mathbf{k})$ is YES
- If a set \mathbf{W} of \mathbf{k} vertices covers all edges then the collection $\left\{S_{\mathbf{v}} \mid \mathbf{v} \in \mathbf{W}\right\}$ of k sets covers all of U
- If the answer to Set-Cover on $f(\mathbf{G}, \mathbf{k})$ is YES then the answer for Vertex-Cover on (\mathbf{G}, \mathbf{k}) is YES
- If a subcollection $S_{v_{1}}, \ldots, S_{v_{k}}$ covers all of U then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ is a vertex cover in \mathbf{G}.

Decision problems

- Computational complexity usually analyzed using decision problems
- answer is just 1 or 0 (yes or no).
- Why?
- much simpler to deal with
- deciding whether G has a path from s to t, is certainly no harder than finding a path from s to t in G, so a lower bound on deciding is also a lower bound on finding
- Less important, but if you have a good decider, you can often use it to get a good finder.

Polynomial time

- Define P (polynomial-time) to be
- the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

Beyond P?

- There are many other natural, practical problems for which we don't know any polynomial-time algorithms; e.g.,
- Independent-Set, Clique, Vertex-Cover,

Set-Cover

- decisionTSP:
- Given a weighted graph G and an integer k,
- does there exist a tour that visits all vertices in G having total weight at most k ?

Satisfiability

- Boolean variables $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}$
- taking values in $\{0,1\}$. $0=$ false, $1=$ true
- Literals
- x_{i} or $\neg x_{i}$ for $i=1, \ldots, n$
- Clause
- a logical OR of one or more literals
- e.g. ($\mathrm{x}_{1} \vee \neg \mathrm{x}_{3} \vee \mathrm{x}_{7} \vee \mathrm{x}_{12}$)
- CNF formula
- a logical AND of a bunch of clauses
- k-CNF formula
- All clauses have exactly k variables

Satisfiability

- CNF formula example

$$
\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}\right)
$$

- If there is some assignment of 0 's and 1 's to the variables that makes it true then we say the formula is satisfiable
- the one above is, the following isn't
$-\mathbf{x}_{1} \wedge\left(\neg \mathbf{x}_{1} \vee \mathbf{x}_{2}\right) \wedge\left(\neg \mathbf{x}_{2} \vee \mathbf{x}_{3}\right) \wedge \neg \mathbf{x}_{3}$
- 3-SAT: Given a CNF formula F with 3 variables per clause, is it satisfiable?

Common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find
- e.g.
- DecisionTSP: the tour itself,
- Independent-Set, Clique: the set U
- 3-SAT: an assignment that makes F true.

The complexity class NP

NP consists of all decision problems where

- You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate
and
- No fake certificate can fool your polynomial time verifier into saying YES for a NO instance

More Precise Definition of NP

A decision problem A is in NP iff there is

- a polynomial time procedure VerifyA(.,.) and
- a polynomial p
s.t.
- for every input \mathbf{x} that is a YES for A there is a string t with $|\mathbf{t}| \leq \mathbf{p}(|\mathbf{x}|)$ with VerifyA $(\mathbf{x}, \mathbf{t})=$ YES
and
- for every input \mathbf{x} that is a NO for A there does not exist a string t with with $|\mathbf{t}| \leq \mathbf{p}(|\mathbf{x}|)$ with VerifyA(x,t) = YES
 certificate for \mathbf{x} or a proof that \mathbf{x} is a YES input

Example: CLIQUE is in NP

procedure Verify($\mathbf{x , t}$) if
\mathbf{x} is a well-formed representation of a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, and
\mathbf{t} is a well-formed representation of a vertex subset \mathbf{U} of \mathbf{V} of size \mathbf{k}, and
\mathbf{U} is a clique in \mathbf{G}, then output "YES" else output "I'm not convinced"

Is it correct?

For every $\mathbf{x}=(\mathbf{G}, \mathbf{k})$ such that \mathbf{G} contains a k -clique, there is a certificate t that will cause Verify (x,t) to say YES,

- $\mathbf{t}=\mathbf{a}$ list of the vertices in such a \mathbf{k}-clique

And no fake certificate t can fool Verify (\mathbf{x}, \mathbf{t}) into saying YES if either

- x isn't well-formed (the uninteresting case)
- $\mathbf{X}=(\mathbf{G}, \mathbf{k})$ but \mathbf{G} does not have any cliques of size \mathbf{k} (the interesting case)

NP problems can be amusing

- Sudoku
- Is there a solution where this square has value 4?
- Certificate = full filled in table
- Easy to check

| 9 | | | 5 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 2 | | 7 | | | 5 | | |
| | | 5 | | | | 6 | | 7 |
| | | 6 | | | 4 | | | |
| 2 | | | | 3 | | | 9 | |
| | 8 | | | | | | 1 | |
| 4 | | | | | | | | 8 |
| | | | 1 | 8 | | 4 | | |
| 7 | | | | | | | 2 | |

NP problems can be amusing

- Sudoku
- Is there a solution where this square has value 4?
- Certificate = full filled in table
- Easy to check

| 9 | | | 5 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 2 | | 7 | | | 5 | | |
| | | 5 | | | | 6 | | 7 |
| | | 6 | | | 4 | | | |
| 2 | | | | 3 | | | 9 | |
| | 8 | | | | | | 1 | |
| 4 | | | | | | | | 8 |
| | | | 1 | 8 | | 4 | | |
| 7 | | | | | | | 2 | |

- All NP problems could be solved by solving general $\mathbf{n}^{2} \times \mathbf{n}^{2}$ version of Sudoku!

Keys to showing that a problem is in NP

1. What's the output? (must be YES/NO)
2. What must the input look like?
3. Which inputs need a YES answer?

- Call such inputs YES inputs/YES instances

4. For every given YES input, is there a certificate (i.e., a hint) that would help?

- OK if some inputs don't need a certificate

5. For any given NO input, is there a fake certificate that would trick you?

Solving NP problems without hints

- The only obvious algorithm for most of these problems is brute force:
- try all possible certificates and check each one to see if it works.
- Exponential time:
- 2^{n} truth assignments for n variables
- n ! possible TSP tours of n vertices
- ($\left.\begin{array}{l}\mathbf{n} \\ \mathbf{k}\end{array}\right)$ possible \mathbf{k} element subsets of \mathbf{n} vertices
- etc.

What We Know

- Nobody knows if all problems in NP can be done in polynomial time; i.e., does $\mathbf{P}=\mathbf{N P}$?
- one of the most important open questions in all of science.
- huge practical implications
- Every problem in \mathbf{P} is in NP
- one doesn't even need a certificate for problems in P so just ignore any hint you are given
- Every problem in NP is in exponential time

NP-hardness \& NP-completeness

- Some problems in NP seem hard
- people have looked for efficient algorithms for them for hundreds of years without success
- However
- nobody knows how to prove that they are really hard to solve, i.e. $\mathbf{P} \neq \mathbf{N P}$

Problems in NP that seem hard

- Some Examples in NP
- 3-SAT
- Independent-Set
- Clique
- Vertex Cover
- All hard to solve; certificates seem to help on all
- Fast solution to any gives fast solution to all!

NP-hardness \& NP-completeness

- Alternative approach to proving problems not in \mathbf{P}
- show that they are at least as hard as any problem in NP
- Rough definition:
- A problem is NP-hard iff it is at least as hard as every problem in NP
- A problem is NP-complete iff it is both
- NP-hard
- in NP

P and NP

NP-hardness \& NP-completeness

- Definition: A problem B is NP-hard iff every problem $A \in N P$ satisfies $A \leq_{p} B$
- Definition: A problem B is NP-complete iff B is $N P$-hard and $B \in N P$
- Even though we seem to have lots of hard problems in NP it is not obvious that such super-hard problems even exist!

Cook-Levin Theorem

- Theorem (Cook 1971, Levin 1973): 3-SAT is NP-complete
- Recall
- CNF formula
$-\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}\right)$
- If there is some assignment of 0 's and 1 's to the variables that makes it true then we say the formula is satisfiable
- 3-SAT: Given a 3-CNF formula F, is it satisfiable?

Implications of Cook-Levin Theorem?

- There is at least one interesting super-hard problem in NP
- Is that such a big deal?
- YES!
- There are lots of other problems that can be solved if we had a polynomial-time algorithm for 3-SAT
- Many of these problems are exactly as hard as 3-SAT

A useful property of polynomial-time reductions

- Theorem: If $\mathbf{A} \leq_{p} \mathbf{B}$ and $\mathrm{B} \leq_{\mathrm{p}} \mathbf{C}$ then $\mathrm{A} \leq_{\mathrm{p}} \mathrm{C}$
- Proof idea: (Using \leq_{p}^{1})
- Compose the reduction from A to B with the reduction g from B to C to get a new reduction $\mathbf{h}(\mathbf{x})=\mathbf{g}(\mathbf{f}(\mathbf{x}))$ from \mathbf{A} to \mathbf{C}.
- The general case is similar and uses the fact that the composition of two polynomials is also a polynomial

Cook-Levin Theorem \& Implications

- Theorem (Cook 1971, Levin 1973): 3-SAT is NP-complete

For proof see CSE 431

- Corollary: B is NP-hard \Leftrightarrow 3-SAT $\leq_{P} B$
- (or A $\leq_{p} \mathbf{B}$ for any NP-complete problem A)
- Proof:
- If B is NP-hard then every problem in NP polynomial-time reduces to B, in particular 3-SAT does since it is in NP
- For any problem \mathbf{A} in NP, $\mathbf{A} \leq_{p} 3-S A T$ and so if $3-S A T \leq_{p} B$ we have $A \leq_{p} B$.
- therefore B is NP-hard if 3 -SAT $\leq_{p} B$

Another NP-complete problem: 3-SAT $\leq_{\text {pl }}$ Independent-Set

- A Tricky Reduction:
- mapping CNF formula F to a pair <G,k>
- Let \mathbf{m} be the number of clauses of F
- Create a vertex in G for each literal in F
- Join two vertices \mathbf{u}, \mathbf{v} in \mathbf{G} by an edge iff
- u and v correspond to literals in the same clause of \mathbf{F}, (green edges) or
$-\mathbf{u}$ and \mathbf{v} correspond to literals \mathbf{x} and $\neg \mathbf{x}$ (or vice versa) for some variable \mathbf{x}. (red edges).
- Set $\mathbf{k}=\mathbf{m}$
- Clearly polynomial-time

3-SAT _pl Independent-Set $^{\text {I }}$

F: $\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}\right)$

3-SAT $\leq_{\text {p Independent-Set }}$

- Correctness:
- If F is satisfiable then there is some assignment that satisfies at least one literal in each clause.
- Consider the set U in G corresponding to the first satisfied literal in each clause.
- |U|=m
- Since U has only one vertex per clause, no two vertices in U are joined by green edges
- Since a truth assignment never satisfies both \mathbf{x} and $\neg \mathbf{x}$, \mathbf{U} doesn't contain vertices labeled both \mathbf{x} and $\neg \mathbf{x}$ and so no vertices in U are joined by red edges
- Therefore \mathbf{G} has an independent set, \mathbf{U}, of size at least m
- Therefore (\mathbf{G}, m) is a YES for independent set.

3-SAT $\leq_{\text {p Independent-Set }}$

1	0	1	1	0	1	1	0	1

F: $\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}\right)$

Given assignment $\mathbf{x}_{1}=\mathrm{x}_{2}=\mathrm{x}_{3}=\mathrm{x}_{4}=1$,
U is as circled

3-SAT $\leq_{\text {p Independent-Set }}$

- Correctness continued:
- If (\mathbf{G}, m) is a YES for Independent-Set then there is a set \mathbf{U} of m vertices in G containing no edge.
- Therefore U has precisely one vertex per clause because of the green edges in G .
- Because of the red edges in G, U does not contain vertices labeled both \mathbf{x} and $\neg \mathbf{x}$
- Build a truth assignment A that makes all literals labeling vertices in \mathbf{U} true and for any variable not labeling a vertex in U, assigns its truth value arbitrarily.
- By construction, A satisfies F
- Therefore F is a YES for 3-SAT.

3-SAT $\leq_{\text {p Independent-Set }}$

F: $\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}\right)$

Given U, satisfying assignment is $\mathrm{x}_{1}=\mathrm{x}_{3}=\mathrm{x}_{4}=0, \mathrm{x}_{2}=0$ or 1

Independent-Set is NP-complete

- We just showed that Independent-Set is NPhard and we already knew Independent-Set is in NP.
- Corollary: Clique is NP-complete
- We showed already that Independent-Set \leq_{p} Clique and Clique is in NP.

Problems we already know are NPcomplete

- 3-SAT
- Independent-Set
- Clique
- Vertex-Cover
- Set-Cover
- There are 1000's of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

Steps to Proving Problem B is NP-complete

- Show B is NP-hard:
- State:"Reduction is from NP-hard Problem A"
- Show what the map f is
- Argue that fis polynomial time
- Argue correctness: two directions Yes for A implies Yes for B and vice versa.
- Show B is in NP
- State what hint/certificate is and why it works
- Argue that it is polynomial-time to check.

Some other NP-complete examples you should know

- Hamiltonian-Cycle Given a directed graph G is there a cycle in G that visits each vertex in G exactly once?
- Hamiltonian-Path Given a directed graph G is there a path in G that visits each vertex in G exactly once?
- Both are also NP-complete when G is an undirected graph
- Note that deciding the similar questions for EulerianCycle and Eulerian-Path (which require that each edge be visited exactly once rather than each vertex) can be done in polynomial time.
- How?

Travelling-Salesman Problem (TSP)

- Given a set of \mathbf{n} cities $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{n}}$ and distances between each pair of cities $\mathbf{d}\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right)$ what is the shortest tour that visits all the cities?
- Not a decision problem
- DecisionTSP:
- Given a set of distances given by d for each pair of cities in $\mathbf{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$ and an integer D , does there exist a tour that visits all cities having total weight at most D ?

Hamiltonian-Cycle \leq_{p} DecisionTSP

- Define the reduction
- Vertices V of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ become cities
- Set $\mathbf{d}\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right)$ to $\mathbf{1}$ if $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right) \in E$

2 if not

- Set $\mathbf{D}=|\mathbf{V}|$
- Claim: There is a Hamiltonian cycle in \mathbf{G} iff there is a tour of length $|\mathbf{V}|$

Graph Colorability

- Defn: Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, and an integer k , a k-coloring of G is
- an assignment of up to k different colors to the vertices of G so that the endpoints of each edge have different colors.
- 3-Color: Given a graph $G=(V, E)$, does G have a 3-coloring?
- Claim: 3-Color is NP-complete
- Proof: 3-Color is in NP:
- Hint is an assignment of red,green,blue to the vertices of G
- Easy to check that each edge is colored correctly

3-SAT \leq p 3 -Color

- Reduction:
- We want to map a 3-CNF formula F to a graph G so that
- G is 3 -colorable iff F is satisfiable

3-SAT \leq p 3 -Color

Base Triangle

3-SAT \leq p 3 -Color

3-SAT $\leq_{p} 3$-Color

Clause Part:
Add one 6 vertex gadget per clause connecting its 'outer vertices' to the literals in the clause

3-SAT $\leq_{p} 3$-Color

Any truth assignment satisfying the formula can be extended to a 3-coloring of the graph

Any 3-coloring of the graph colors
each gadget triangle using each color

Any 3-coloring of the graph has an F opposite the O color in the triangle of each gadget

Any 3-coloring of the graph has T at the other end of the blue edge connected to the F

More NP-completeness

- Subset-Sum problem (Decision version of Knapsack)
- Given \mathbf{n} integers $\mathbf{w}_{1}, \ldots, \mathbf{w}_{\mathrm{n}}$ and integer W
- Is there a subset of the \mathbf{n} input integers that adds up to exactly W?
- O(nW) solution from dynamic programming but if \mathbf{W} and each \mathbf{w}_{i} can be \mathbf{n} bits long then this is exponential time

3-SAT \leq_{p} Subset-Sum

- Given a 3-CNF formula with m clauses and n variables
- Will create $2 m+2 n$ numbers that are m+n digits long
- Two numbers for each variable \mathbf{x}_{i}
- t_{i} and f_{i} (corresponding to x_{i} being true or \mathbf{x}_{i} being false)
- Two extra numbers for each clause
- u_{j} and v_{j} (filler variables to handle number of false literals in clause C_{j})

3-SAT \leq_{p} Subset-Sum

	$\left\lvert\, \begin{array}{cc} i & j \\ 1234 \ldots & n \\ \hline \end{array}\right.$	$C_{3}=\left(x_{1} \vee \neg x_{2} \vee x_{5}\right)$
t_{1}	$1000 \ldots 00010 \ldots 1$	
f_{1}	$1000 \ldots 01001 \ldots 0$	
t_{2}	$0100 \ldots 00100 \ldots 1$	
f_{2}	$0100 \ldots 0001 \ldots 0$	
	0000... $01000 \ldots 0$	
$\mathrm{u}_{2}=\mathrm{v}_{2}$	$0000 \ldots 00100 \ldots 0$	
	\cdots	
W	$1111 \ldots 13333 \ldots 3$	

Matching Problems

- Perfect Bipartite Matching
- Given a bipartite graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ where $\mathbf{V}=\mathbf{X} \cup \mathbf{Y}$ and $\mathbf{E} \subseteq \mathbf{X} \times \mathbf{Y}$, is there a set \mathbf{M} in E such that every vertex in V is in precisely one edge of M ?
- In P
- Network Flow gives O(nm) algorithm where $\mathbf{n}=|\mathbf{V}|, \mathbf{m}=|\mathbf{E}|$.

3-Dimensional Matching

- Perfect Bipartite Matching is in P
- Given a bipartite graph $\mathbf{G}=(\mathbf{V}, E)$ where $\mathbf{V}=\mathbf{X} \cup \mathbf{Y}$ and $\mathbf{E} \subseteq \mathbf{X} \times \mathbf{Y}$, is there a subset \mathbf{M} in \mathbf{E} such that every vertex in V is in precisely one edge of M ?
- 3-Dimensional Matching
- Given a tripartite hypergraph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ where $\mathbf{V}=\mathbf{X} \cup \mathbf{Y} \cup \mathbf{Z}$ and $\mathbf{E} \subseteq \mathbf{X} \times \mathbf{Y} \times \mathbf{Z}$, is there a subset \mathbf{M} in \mathbf{E} such that every vertex in \mathbf{V} is in precisely one hyperedge of M ?
- is in NP: Certificate is the set M

3-Dimensional Matching

- Theorem: 3-Dimensional Matching is NP-complete
- Proof:
- We've already seen that it is in NP
- 3-Dimensional Matching is NP-hard:
- Reduction from 3-SAT
- Given a 3-CNF formula F we create a tripartite hypergraph ("hyperedges" are triangles) G based on F as follows

3-SAT \leq_{p} 3-Dimensional Matching

- Variable part:
- If variable x_{i} occurs r_{i} times in F create r_{i} red and r_{i} green triangles linked in a circle, one pair per occurrence
- Perfect matching M must either use all the green edges leaving red tips uncovered ($\mathbf{x}_{\mathbf{i}}$ is assigned false) or all the red edges leaving all green tips uncovered ($\mathbf{x}_{\mathbf{i}}$ is assigned true)

3-SAT \leq_{P} 3-Dimensional Matching

- Clause part: Two new nodes per clause joined to each of its literals:

3-SAT \leq_{p} 3-Dimensional Matching

- Slack: If there are m clauses then there are $3 m$ variable occurrences. That means 3 m total tips are not covered by whichever of red or green triangles not chosen. Of these, m are covered if each clause is satisfied. Need to cover the remaining 2 m tips.

Solution: Add 2 m pairs of slack vertices Add triangles joining each pair with every tip!

3-SAT \leq_{p} 3-Dimensional Matching

- Well-formed: Each triangle has one of each type of node:
- Correctness:
- If F has a satisfying assignment then choose the following triangles which form a perfect 3-dimensional matching in G:
- Either the red or the green triangles in the cycle for x_{i} - the opposite of the assignment to x_{i}
- The triangle containing the first true literal for each clause and the two clause nodes
- 2 m slack triangles one per new pair of nodes to cover all the remaining tips

3-SAT \leq_{P} 3-Dimensional Matching

- Correctness continued:
- If G has a perfect 3-dimensional matching then:
- Each blue node in the cycle for each \mathbf{x}_{i} is contained in exactly two triangles, exactly one of which much be in M. If one triangle in the cycle is in M, the others must be the same color. We use the color not used to define the truth assignment to $\mathbf{x}_{\mathbf{i}}$
- The two nodes for any clause must be contained in an edge which must also contain a third node that corresponds to a literal made true by the truth assignment. Therefore the truth assignment satisfies F so it is satisfiable.

P vs NP

- Theory
- $\mathbf{P}=\mathbf{N P}$?
- Open Problem!
- Bet against it
- Online commerce could never be secure if it were
- e.g., A polynomial time algorithm could figure out any password efficiently
- Practice
- Many interesting, useful, natural, well-studied problems in many fields known to be NP-complete
- No one always succeeds in finding exact solutions to large, arbitrary instances
- But sometimes guaranteed to find approximate solutions quite well
- Algorithms that mostly fail can also work when we need them

Is NP as bad as it gets?

- NO! NP-complete problems are frequently encountered, but there are worse:
- Some problems provably require exponential time.
- Ex: Does M halt on input \mathbf{x} in $2^{|x|}$ steps?
- Some require $2^{n}, 2^{2^{n}}, 2^{2^{2^{n}}}, \ldots$ steps
- And some are just plain uncomputable

