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Computational Complexity

 Classify problems according to the 
amount of computational resources
used by the best algorithms that solve 
them

 Recall:  

 worst-case running time of an algorithm 

 max # steps algorithm takes on any 

input of size n
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Relative Complexity of Problems

 Want to compare the complexity of 
problems
 Want to be able to say

“Problem B is solvable in polynomial time   
⇒ problem A is solvable in polynomial time”

“Problem B is at least as hard as problem A”
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Polynomial Time Reduction 

 Definition: A ≤P B iff there is an algorithm for A using 
a ‘black box’ (subroutine/method) that solves B that
 Uses only a polynomial number of steps 
 Makes only a polynomial number of calls to a method for B
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Polynomial Time Reduction 

 Definition: A ≤P B iff there is an algorithm for A using 
a ‘black box’ (subroutine/method) that solves B that
 Uses only a polynomial number of steps 
 Makes only a polynomial number of calls to a method for B

 If A ≤P B then:                                                                      
poly time algorithm for B ⇒ poly time algorithm for A
 Not only is the number of calls polynomial but the size of the 

inputs on which the calls are made is polynomial!
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Polynomial Time Reduction 

 Definition: A ≤P B iff there is an algorithm for A using 
a ‘black box’ (subroutine/method) that solves B that
 Uses only a polynomial number of steps 
 Makes only a polynomial number of calls to a method for B

 If A ≤P B then:                                                                      
poly time algorithm for B ⇒ poly time algorithm for A
 Not only is the number of calls polynomial but the size of the 

inputs on which the calls are made is polynomial!

if you can prove there is no fast algorithm for A, then   
that proves there is no fast algorithm for B
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Why the name reduction?

 Weird: it maps an easier problem into a 
harder one

 Maxwell reduced the problem of 
analyzing electricity & magnetism to
solving partial differential equations
 solving partial differential equations in 

general is a much harder problem than 
solving E&M problems

 but we know that we won’t need anything 
else
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A nerd joke

 An engineer
 is placed in a kitchen with an empty kettle on the table and told 

to boil water; she fills the kettle with water, puts it on the stove, 
turns on the gas and boils water.
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A nerd joke

 An engineer
 is placed in a kitchen with an empty kettle on the table and told 

to boil water; she fills the kettle with water, puts it on the stove, 
turns on the gas and boils water.

 she is next confronted with a kettle full of water sitting on the 
counter and told to boil water; she puts it on the stove, turns on 
the gas and boils water.
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A nerd joke

 An engineer
 is placed in a kitchen with an empty kettle on the table and told 

to boil water; she fills the kettle with water, puts it on the stove, 
turns on the gas and boils water.

 she is next confronted with a kettle full of water sitting on the 
counter and told to boil water; she puts it on the stove, turns on 
the gas and boils water.

 A mathematician
 is placed in a kitchen with an empty kettle on the table and told 

to boil water; she fills the kettle with water, puts it on the stove, 
turns on the gas and boils water.
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A nerd joke

 An engineer
 is placed in a kitchen with an empty kettle on the table and told 

to boil water; she fills the kettle with water, puts it on the stove, 
turns on the gas and boils water.

 she is next confronted with a kettle full of water sitting on the 
counter and told to boil water; she puts it on the stove, turns on 
the gas and boils water.

 A mathematician
 is placed in a kitchen with an empty kettle on the table and told 

to boil water; she fills the kettle with water, puts it on the stove, 
turns on the gas and boils water.

 she is next confronted with a kettle full of water sitting on the 
counter and told to boil water: she empties the kettle in the sink, 
places the empty kettle on the table and says, “I’ve reduced this 
to an already solved problem”.
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A Special kind of Polynomial-Time 
Reduction

We will always use a restricted form of A ≤P B

often called a Karp or many-one reduction

Definition: A ≤�
� B iff there is an algorithm for A 

given a black box solving B that on input x

 Runs for polynomial time computing y=f(x)

 Makes 1 call to the black box for B on input y

 Returns the answer that the black box gave

We say that  the function f is the reduction
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Reductions by Simple Equivalence

 Independent-Set:
 Given a graph G=(V,E) and an integer k, 

 is there a subset U of V with |U| ≥ k such that 
no two vertices in U are joined by an edge?

 Clique:
 Given a graph G=(V,E) and an integer k

 is there a subset U of V with |U| ≥ k such that 
every pair of vertices in U is joined by an edge?

 Show: Independent-Set ≤P Clique
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Independent-Set ≤P Clique

 Given:

 (G,k) as input to Independent-Set where 

G=(V,E)

 Transform (G,k) to (G’,k) where

 G’=(V,E’) has the same vertices as G but

E’ consists of precisely those edges on V
that are not edges of G

 U is an independent set in G

⇔ U is a clique in G’
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Clique ≤P Independent-Set

 Given:

 (G,k) as input to Clique where G=(V,E)

 Transform (G,k) to (G’,k) where

 G’=(V,E’) has the same vertices as G but

E’ consists of precisely those edges on V
that are not edges of G

 U is an clique in G

⇔ U is a independent set in G’
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More Reductions

 Show: Independent Set ≤P Vertex-Cover

 Vertex-Cover:
 Given a graph G=(V,E) and an integer k, 

 is there a subset W of V with |W| ≤ k such that 
every edge of G has at least one endpoint in 
W?  (i.e. W covers all edges of G)?

 Independent-Set:
 Given a graph G=(V,E) and an integer k, 

 is there a subset U of V with |U| ≥ k such that 
no two vertices in U are joined by an edge?
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Reduction Idea

 Claim: In a graph G=(V,E), for S⊆V
S is an independent set ⇔ V-S is a vertex cover

 Proof:
  Let S be an independent set in G

 Then for every edge e∈E,                                         
S contains at most one endpoint of e

 At least one endpoint of e must be in V-S

 V-S is a vertex cover
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Reduction Idea

 Claim: In a graph G=(V,E), for S⊆V
S is an independent set ⇔ V-S is a vertex cover

 Proof:
  Let S be an independent set in G

 Then for every edge e∈E,                                         
S contains at most one endpoint of e

 At least one endpoint of e must be in V-S

 V-S is a vertex cover

 ⇐ Let W=V-S be a vertex cover of G

 Then S does not contain both endpoints of any 
edge (else W would miss that edge)

 S is an independent set
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Reduction

 Map (G,k) to (G,n-k)

 Previous lemma proves correctness

 Clearly polynomial time

 Just as for Clique, we also can show

 Vertex-Cover ≤P Independent Set

 Map (G,k) to (G,n-k)
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Reductions from a Special Case to a 
General Case

 Show: Vertex-Cover ≤P Set-Cover

 Vertex-Cover:
 Given a graph G=(V,E) and an integer k, 

 is there a subset W of V with |W| ≤ k such that 
every edge of G has at least one endpoint in 
W?  (i.e. W covers all edges of G)?

 Set-Cover:
 Given a set U of n elements, a collection S1,…,Sm

of subsets of U, and an integer k

 does there exist a collection of at most k sets 
whose union is equal to U?
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The Simple Reduction

 Transformation f maps             
(G=(V,E),k) to (U,S1,…,Sm,k’)
 U←E

 For each vertex v∈V create a set Sv

containing all edges that touch v

 k’←k

 Reduction f is clearly polynomial-time to 
compute

 We need to prove that the resulting 
algorithm gives the right answer!



22

Proof of Correctness

 Two directions:  

 If the answer to Vertex-Cover on (G,k) is YES then 

the answer for Set-Cover on f(G,k) is YES

 If a set W of k vertices covers all edges then 

the collection {Sv | v∈ W} of k sets covers all of 

U
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Proof of Correctness

 Two directions:  

 If the answer to Vertex-Cover on (G,k) is YES then 

the answer for Set-Cover on f(G,k) is YES

 If a set W of k vertices covers all edges then 

the collection {Sv | v∈ W} of k sets covers all of 

U

 If the answer to Set-Cover on f(G,k) is YES then 

the answer for Vertex-Cover on (G,k) is YES

 If a subcollection Sv1
,…,Svk

covers all of U then 

the set {v1,…,vk} is a vertex cover in G.
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Decision problems

 Computational complexity usually analyzed 
using decision problems
 answer is just 1 or 0 (yes or no).

 Why?
 much simpler to deal with

 deciding whether G has a path from s to t, is 
certainly no harder than finding a path from s to t
in G, so a lower bound on deciding is also a lower 
bound on finding

 Less important, but if you have a good decider, 
you can often use it to get a good finder.  
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Polynomial time

 Define P (polynomial-time) to be 

 the set of all decision problems solvable by 

algorithms whose worst-case running time 

is bounded by some polynomial in the input 

size. 
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Beyond P?

 There are many other natural, practical 
problems for which we don’t know any 
polynomial-time algorithms; e.g.,

 Independent-Set, Clique, Vertex-Cover,

Set-Cover

 decisionTSP:

 Given a weighted graph G and an 

integer k, 

 does there exist a tour that visits all vertices 

in G having total weight at most k?
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Satisfiability

 Boolean variables x1,...,xn

 taking values in {0,1}.  0=false, 1=true

 Literals
 xi or ¬xi for i=1,...,n

 Clause
 a logical OR of one or more literals

 e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

 CNF formula
 a logical AND of a bunch of clauses

 k-CNF formula
 All clauses have exactly k variables
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Satisfiability

 CNF formula example
(x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

 If there is some assignment of 0’s and 
1’s to the variables that makes it true 
then we say the formula is satisfiable

 the one above is, the following isn’t

 x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

 3-SAT: Given a CNF formula F with 3
variables per clause, is it satisfiable?
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Common property of these problems

 There is a special piece of information, a 
short certificate or proof, that allows you to 
efficiently verify (in polynomial-time) that the 
YES answer is correct.  This certificate might 
be very hard to find

 e.g.  
 DecisionTSP: the tour itself, 

 Independent-Set, Clique: the set U

 3-SAT: an assignment that makes F true.
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The complexity class NP

NP consists of all decision problems where 

 You can verify the YES answers efficiently 

(in polynomial time) given a short 

(polynomial-size) certificate

and

 No fake certificate can fool your polynomial 

time verifier into saying YES for a NO
instance
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More Precise Definition of NP

A decision problem A is in NP iff there is
 a polynomial time procedure VerifyA(.,.) and

 a polynomial p

s.t.
 for every input x that is a YES for A there is a string t

with |t| ≤ p(|x|) with VerifyA(x,t) = YES

and

 for every input x that is a NO for A there does not
exist a string t with with |t| ≤ p(|x|) with                   
VerifyA(x,t) = YES

 A string t on which VerifyA(x,t)=YES is called a 
certificate for x or a proof that x is a YES input
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Example: CLIQUE is in NP

procedure Verify(x,t)

if 

x is a well-formed representation of a 
graph G = (V, E) and an integer k, 

and 

t is a well-formed representation of a 
vertex subset U of V of size k, 

and 

U is a clique in G, 

then output "YES"

else output "I'm not convinced" 
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Is it correct?

For every x = (G,k) such that G contains a   
k-clique, there is a certificate t that will 
cause Verify(x,t) to say YES,
 t = a list of the vertices in such a k-clique

And no fake certificate t can fool 
Verify(x,t) into saying YES if either 
 x isn't well-formed (the uninteresting case)

 x = (G,k) but G does not have any cliques 
of size k (the interesting case)



NP problems can be amusing

 Sudoku

 Is there a solution 

where this square 

has value 4?

 Certificate = full filled 

in table

 Easy to check

34



NP problems can be amusing

 Sudoku

 Is there a solution 

where this square 

has value 4?

 Certificate = full filled 

in table

 Easy to check
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 All NP problems could be solved by

solving general n2 x n2 version of Sudoku!
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Keys to showing  that 
a problem is in NP

1. What's the output?  (must be YES/NO)

2. What must the input look like?  

3. Which inputs need a YES answer?
 Call such inputs YES inputs/YES instances

4. For every given YES input, is there a 
certificate (i.e., a hint) that would help?
 OK if some inputs don’t need a certificate

5. For any given NO input, is there a fake 
certificate that would trick you?



37

Solving NP problems 
without hints

 The only obvious algorithm for most of 

these problems is brute force:

 try all possible certificates and check each one to 

see if it works.

 Exponential time:

 2n truth assignments for n variables

 n! possible TSP tours of n vertices

 possible k element subsets of n vertices

 etc.

n

k

 
 
 
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What We Know

 Nobody knows if all problems in NP can be 

done in polynomial time; i.e., does P=NP?

 one of the most important open questions in all of 

science.

 huge practical implications

 Every problem in P is in NP

 one doesn’t even need a certificate for problems in 

P so just ignore any hint you are given

 Every problem in NP is in exponential time
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NP-hardness & 
NP-completeness

 Some problems in NP seem hard

 people have looked for efficient algorithms 

for them for hundreds of years without 

success

 However

 nobody knows how to prove that they are 

really hard to solve, i.e. P≠ NP
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Problems in NP that seem hard

 Some Examples in NP

 3-SAT

 Independent-Set

 Clique

 Vertex Cover

 All hard to solve; certificates seem to 
help on all

 Fast solution to any gives fast solution 
to all!
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NP-hardness & 
NP-completeness

 Alternative approach to proving problems not 
in P
 show that they are at least as hard as any problem 

in NP

 Rough definition:
 A problem is NP-hard iff it is at least as hard as 

every problem in NP

 A problem is NP-complete iff it is both

 NP-hard

 in NP
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P and NP

NP

P

NP-complete

NP-hard
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NP-hardness & 
NP-completeness

 Definition: A problem B is NP-hard iff
every problem A∈NP satisfies A ≤PB

 Definition: A problem B is NP-complete
iff B is NP-hard and B ∈NP

 Even though we seem to have lots of hard 
problems in NP it is not obvious that such 
super-hard problems even exist!
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Cook-Levin Theorem

 Theorem (Cook 1971, Levin 1973):

3-SAT is NP-complete

 Recall

 CNF formula

 (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

 If there is some assignment of 0’s and 1’s to the 

variables that makes it true then we say the 

formula is satisfiable

 3-SAT: Given a 3-CNF formula F, is it 

satisfiable?
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Implications of Cook-Levin Theorem?

 There is at least one interesting super-hard 
problem in NP

 Is that such a big deal?

 YES!
 There are lots of other problems that can be solved 

if we had a polynomial-time algorithm for 3-SAT

 Many of these problems are exactly as hard as           
3-SAT
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A useful property of polynomial-time 
reductions

 Theorem: If  A ≤PB and B ≤PC then        
A ≤PC  

 Proof idea: (Using )
 Compose the reduction f from A to B with the 

reduction g from B to C to get a new reduction  
h(x)=g(f(x)) from A to C.

 The general case is similar and uses the fact that 
the composition of two polynomials is also a 
polynomial

1
P≤
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Cook-Levin Theorem & Implications

 Theorem (Cook 1971, Levin 1973):
3-SAT is NP-complete

For proof see CSE 431

 Corollary: B is NP-hard ⇔ 3-SAT ≤PB
 (or A ≤PB for any NP-complete problem A)

 Proof:
 If B is NP-hard then every problem in NP

polynomial-time reduces to B, in particular 3-SAT
does since it is in NP

 For any problem A in NP, A ≤P3-SAT and so if
3-SAT ≤PB we have A ≤P B.

 therefore B is NP-hard if 3-SAT ≤PB
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Another NP-complete problem:
3-SAT ≤PIndependent-Set

 A Tricky Reduction:

 mapping CNF formula F to a pair <G,k>

 Let m be the number of clauses of F

 Create a vertex in G for each literal in F

 Join two vertices u, v in G by an edge iff

 u and v correspond to literals in the same 

clause of F, (green edges) or

 u and v correspond to literals x and ¬x (or vice 

versa) for some variable x.  (red edges).

 Set k=m

 Clearly polynomial-time
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3-SAT ≤PIndependent-Set

F:   (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4

¬x1

x2

x2

x4 x3x3
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3-SAT ≤PIndependent-Set

 Correctness:

 If F is satisfiable then there is some assignment that 
satisfies at least one literal in each clause.  

 Consider the set U in G corresponding to the first satisfied 
literal in each clause.  

 |U|=m

 Since U has only one vertex per clause, no two vertices 
in U are joined by green edges

 Since a truth assignment never satisfies both x and ¬x,
U doesn’t contain vertices labeled both x and ¬x and so 
no vertices in U are joined by red edges

 Therefore G has an independent set, U, of size at least
m

 Therefore (G,m) is a YES for independent set.
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3-SAT ≤PIndependent-Set

F:   (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4

¬x1

x2

x2

x4 x3x3

1       0      1         1      0      1         1       0       1

Given assignment x1=x2=x3=x4=1,

U is as circled

U
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3-SAT ≤PIndependent-Set

 Correctness continued:
 If (G,m) is a YES for Independent-Set then there is 

a set U of m vertices in G containing no edge.

 Therefore U has precisely one vertex per 
clause because of the green edges in G.

 Because of the red edges in G, U does not 
contain vertices labeled both x and ¬x

 Build a truth assignment A that makes all 
literals labeling vertices in U true and for any 
variable not labeling a vertex in U, assigns its 
truth value arbitrarily.

 By construction, A satisfies F
 Therefore F is a YES for 3-SAT.
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3-SAT ≤PIndependent-Set

F:   (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4

¬x1

x2

x2

x4 x3x3

Given U, satisfying assignment

is x1=x3=x4=0, x2=0 or 1

0       1     0         ?       1      0         ?       1      0
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Independent-Set is NP-complete

 We just showed that Independent-Set is NP-

hard and we already knew Independent-Set
is in NP.

 Corollary: Clique is NP-complete

 We showed already that                          

Independent-Set ≤P Clique and Clique is 

in NP.
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Problems we already know are NP-
complete

 3-SAT

 Independent-Set

 Clique

 Vertex-Cover

 Set-Cover

 There are 1000’s of practical problems 
that are NP-complete, e.g. scheduling, 
optimal VLSI layout etc. 



56

Steps to Proving Problem B is       
NP-complete

 Show B is NP-hard:  
 State:”Reduction is from NP-hard Problem A”

 Show what the map f is

 Argue that f is polynomial time

 Argue correctness:  two directions Yes for 
A implies Yes for B and vice versa. 

 Show B is in NP
 State what hint/certificate is and why it 

works

 Argue that it is polynomial-time to check.
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Some other NP-complete examples 
you should know

 Hamiltonian-Cycle Given a directed graph G is 

there a cycle in G that visits each vertex in G exactly 

once?

 Hamiltonian-Path Given a directed graph G is 

there a path in G that visits each vertex in G exactly 

once?

 Both are also NP-complete when G is an undirected graph

 Note that deciding the similar questions for Eulerian-
Cycle and Eulerian-Path (which require that each 

edge be visited exactly once rather than each vertex) 

can be done in polynomial time.

 How?
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Travelling-Salesman Problem (TSP)

 Given a set of n cities v1,…,vn and distances 

between each pair of cities d(vi,vj) what is the 

shortest tour that visits all the cities?

 Not a decision problem

 DecisionTSP:

 Given a set of distances given by d for each pair 

of cities in v1,…,vn and an integer D, does there 

exist a tour that visits all cities having total weight 

at most D?
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Hamiltonian-Cycle≤PDecisionTSP

 Define the reduction

 Vertices V of G=(V,E) become cities

 Set d(vi,vj) to 1 if (vi,vj)E   

2 if not

 Set D=|V|

 Claim: There is a Hamiltonian cycle in G
iff there is a tour of length |V|
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Graph Colorability

 Defn: Given a graph G=(V,E), and an integer k, 
a k-coloring of G is
 an assignment of up to k different colors to the 

vertices of G so that the endpoints of each edge have 
different colors.

 3-Color: Given a graph G=(V,E), does G have a 
3-coloring?

 Claim: 3-Color is NP-complete

 Proof: 3-Color is in NP:
 Hint is an assignment of red,green,blue to the 

vertices of G

 Easy to check that each edge is colored correctly
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3-SAT ≤P3-Color

 Reduction:

 We want to map a 3-CNF formula F to a 

graph G so that

 G is 3-colorable iff F is satisfiable
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3-SAT ≤P3-Color

O

TF

Base Triangle



63

3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

Variable Part: 

in 3-coloring, variable

colors correspond to

some truth assignment 

(same color as T or F)
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3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

Clause Part:  
Add one 6 vertex gadget per clause  connecting 

its ‘outer vertices’ to the literals in the clause
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3-SAT ≤P3-Color

Any truth assignment satisfying the formula 

can be extended to a 3-coloring of the graph

F

O

O

T
F

O

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn
T

F/T

F/T
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3-SAT ≤P3-Color

Any 3-coloring of the graph colors

each gadget triangle using each color

O

F

T

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn
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3-SAT ≤P3-Color

Any 3-coloring of the graph has an F opposite

the O color in the triangle of each gadget

O

F

T

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

F
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3-SAT ≤P3-Color

Any 3-coloring of the graph has T at the

other end of the blue edge connected to the F

O

F

T

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

F

T
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More NP-completeness

 Subset-Sum problem                              
(Decision version of Knapsack)

 Given n integers w1,…,wn and integer W

 Is there a subset of the n input integers 

that adds up to exactly W?

 O(nW) solution from dynamic programming 

but if W and each wi can be n bits long then 

this is exponential time
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3-SAT ≤PSubset-Sum

 Given a 3-CNF formula with m clauses 
and n variables

 Will create 2m+2n numbers that are 
m+n digits long
 Two numbers for each variable xi

 ti and fi (corresponding to xi being true 
or xi being false)

 Two extra numbers for each clause

 uj and vj (filler variables to handle 
number of false literals in clause Cj)



71

3-SAT ≤PSubset-Sum

1 2 3 4 …  n  1 2 3 4 … m

i                   j

1 0 0 0 …  0  0 0 1 0 … 1

1 0 0 0 …  0  1 0 0 1 … 0

0 1 0 0 …  0  0 1 0 0 … 1

0 0 0 0 …  0  1 0 0 0 … 0

0 1 0 0 …  0  0 0 1 1 … 0

t1

f2

t2

f1

C3=(x1∨¬ x2∨ x5)

…          ….

u1=v1

0 0 0 0 …  0  0 1 0 0 … 0u2=v2

…          ….

1 1 1 1 …  1  3 3 3 3 … 3W
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Matching Problems

 Perfect Bipartite Matching

 Given a bipartite graph G=(V,E) where 

V=X∪Y and E ⊆ X × Y, is there a set M in 

E such that every vertex in V is in precisely 

one edge of M ?

 In P

 Network Flow gives O(nm) algorithm 

where n=|V|, m=|E|.
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3-Dimensional Matching

 Perfect Bipartite Matching is in P

 Given a bipartite graph G=(V,E) where V=X∪Y
and E ⊆ X × Y, is there a subset M in E such that 

every vertex in V is in precisely one edge of M ?

 3-Dimensional Matching 

 Given a tripartite hypergraph G=(V,E) where 

V=X∪Y∪Z and E ⊆ X × Y× Z, is there a subset M
in E such that every vertex in V is in precisely one 

hyperedge of M ?

 is in NP: Certificate is the set M
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3-Dimensional Matching

 Theorem: 3-Dimensional Matching is 
NP-complete

 Proof:

 We’ve already seen that it is in NP

 3-Dimensional Matching is NP-hard:

 Reduction from 3-SAT

 Given a 3-CNF formula F we create a 

tripartite hypergraph (“hyperedges” are 

triangles) G based on F as follows
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3-SAT ≤P 3-Dimensional Matching

 Variable part:

 If variable xi occurs ri times in F create ri red and ri green
triangles linked in a circle, one pair per occurrence

 Perfect matching M must either use all the green edges 
leaving red tips uncovered (xi is assigned false) or all the 
red edges leaving all green tips uncovered (xi is 
assigned true)
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3-SAT ≤P 3-Dimensional Matching

 Clause part: Two new nodes per clause joined to 

each of its literals:

x1 x2 x5

C3=(x1∨¬ x2∨ x5)
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3-SAT ≤P 3-Dimensional Matching

 Slack: If there are m clauses then there are 3m variable 

occurrences.   That means 3m total tips are not covered by 
whichever of red or green triangles not chosen.  Of these, m are 
covered if each clause is satisfied.    Need to cover the 
remaining 2m tips.

Solution: Add 2m pairs of slack vertices
Add triangles joining each pair with every tip!
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3-SAT ≤P 3-Dimensional Matching

 Well-formed: Each triangle has one of each 
type of node: 

 Correctness:
 If F has a satisfying assignment then choose the 

following triangles which form a perfect                 
3-dimensional matching in G: 

 Either the red or the green triangles in the cycle 
for xi - the opposite of the assignment to xi

 The triangle containing the first true literal for 
each clause and the two clause nodes

 2m slack triangles one per new pair of nodes to 
cover all the remaining tips



79

3-SAT ≤P 3-Dimensional Matching

 Correctness continued:
 If G has a perfect 3-dimensional matching then:

 Each blue node in the cycle for each xi is 
contained in exactly two triangles, exactly one 
of which much be in M.   If one triangle in the 
cycle is in M, the others must be the same 
color.    We use the color not used to define the 
truth assignment to xi

 The two nodes for any clause must be 
contained in an edge which must also contain a 
third node that corresponds to a literal made 
true by the truth assignment.  Therefore the 
truth assignment satisfies F so it is satisfiable. 
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P vs NP

 Theory

 P = NP?

 Open Problem!

 Bet against it

 Online commerce 

could never be 

secure if it were

 e.g., A polynomial 
time algorithm could 
figure out any 
password efficiently

 Practice

 Many interesting, useful, 

natural, well-studied problems 

in many fields known to be 

NP-complete

 No one always succeeds in 

finding exact solutions to 

large, arbitrary instances

 But sometimes guaranteed to 
find approximate solutions quite 
well

 Algorithms that mostly fail can 
also work when we need them
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Is NP as bad as it gets?

 NO!  NP-complete problems are 
frequently encountered, but there are 
worse:

 Some problems provably require 

exponential time.

 Ex: Does M halt on input x in 2|x| steps?

 Some require                              steps

 And some are just plain uncomputable

nn 2n 2 22 , 2 , 2 , ...


